2019中考数学分类汇编汇总知识点32矩形菱形与正方形(第二期)解析版_第1页
2019中考数学分类汇编汇总知识点32矩形菱形与正方形(第二期)解析版_第2页
2019中考数学分类汇编汇总知识点32矩形菱形与正方形(第二期)解析版_第3页
2019中考数学分类汇编汇总知识点32矩形菱形与正方形(第二期)解析版_第4页
2019中考数学分类汇编汇总知识点32矩形菱形与正方形(第二期)解析版_第5页
已阅读5页,还剩33页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一、选择题(2019广东深圳,12,3分)已知菱形ABCD的边长为4,∠BAD=120°,E、F分别为AB,AD上的点,且BE=AF,则以下结论正确的有()个.①△BEC≌△AFC;②△ECF为等边三角形;③∠AGE=∠AFC;④若GF1AF=1,则=.EG3A.1B.2C.3D.4【答案】D【思路剖析】【解题过程】在四边形ABCD是菱形,∵∠BAD=120°,∴∠B=∠BAC=60°,∴AC=BC,且BE=AF,∴△BEC≌△AFC,故①正确;∵△BEC≌△AFC,∴FC=EC,∠FCA=∠ECB,∴∠ECF=∠ACB=60°,∴△ECF为等边三角形,故②正确;∵∠AGE=180°-∠BAC-∠AEG;∠AFC=180°-∠FAC-∠ACF,∴∠AGE=∠AFC,故③正确;∵AF=1,则AE=3,易得△CFG∽△CBE,∴GFCF,△CEG∽△CAE,∴EGCE,∵CE=CF,AC=BC,BEBCAEAC∴GF=EG,∴GFBE1,故④正确.应选D.BEAEEGAE3【知识点】四边形多结论题;菱形的性质;全等三角形的判断;等边三角形的判断;(2019广西省贵港市,题号12,分值3分)如图,E是正方形ABCD的边AB的中点,点H与B对于CE对称,EH的延伸线与AD交于点

F,与CD的延伸线交于点N,点P在AD的延伸线上,作正方形DPMN

,连结CP

,记正方形

ABCD

DPMN

的面积分别为

S1,S2,则以下结论错误的选项是

(

)1222FDC.CD4PD3A.SSCPB.4FD.cosHCD5【答案】D.【思路剖析】依据勾股定理可判断A;连结CF,作FGEC,易证得FGC是等腰直角三角形,设EGx,则FG2x,利用三角形相像的性质以及勾股定理获得CG2x,CF22x,EC3x,BC65x,FD25x,即可证55得3FDAD,可判断B;依据平行线分线段成比率定理可判断C;求得cosHCD可判断D.【解题过程】解:正方形ABCD,DPMN的面积分别为S1,S2,S1CD2,S2PD2,在RtPCD中,PC2CD2PD2,S1S2CP2,故A结论正确;连结CF,点H与B对于CE对称,CHCB,BCEECH,CHCB在BCE和HCE中,ECHBCE,BCEHCE(SAS),CECEBEEH,EHCB90,BECHEC,CHCD,在RtFCH和RtFCD中CHCD,RtFCHRtFCD(HL),FCHFCD,FHFD,CFCFECHECH145,即ECF45,BCD2作FGEC于G,CFG是等腰直角三角形,FGCG,BECHEC,BFGE90,FEG∽CEB,EGEB1FG2EG,FGBC,2设EGx,则FG2x,CG2x,CF22x,EC3x,EB2BC2EC2,5BC29x2,BC236x2,BC65x,455在RtFDC中,FDCF2CD2(22x)236x225x,553FDAD,AF2FD,故B结论正确;AB//CN,NDFD1,AEAF2PD1,ND,AECD2CD4PD,故C结论正确;EGx,FG2x,EF5x,FHFD25x,565x,BC535x,AE5作HQAD于Q,HQ//AB,HQHFHQ,即AEEF35x5

25x6565652455,HQ5xx,CDHQxx25x,25525245xcosHCD

CDHQCF

610,故结论D错误,应选:D.22x25【知识点】正方形的性质;全等三角形的判断与性质;轴对称的性质;解直角三角形3.(2019广西河池,T9,F3分)如图,在正方形ABCD中,点E,F分别在BC,CD上,BECF,则图中与AEB相等的角的个数是()A.1B.2C.3D.4【答案】B.【分析】证明:四边形ABCD是正方形,AB//BC,ABBC,ABEBCF90,ABBC在ABE和BCF中,ABEBCF,ABEBCF(SAS),BFCAEB,BFCABF,BECF故图中与AEB相等的角的个数是2.应选:B.【知识点】正方形的性质;全等三角形的判断与性质(2019贵州遵义,10,4分)我们把按序连结随意一个四边形各边中点所得四边形叫做中点四边形,已知四边形ABCD的中点四边形是正方形,对角线AC与BD的关系,以下说法正确的选项是(A)AC,BD相等且相互均分(B)AC,BD垂直且相互均分(C)AC,BD相等且相互垂直(D)AC,BD垂直且均分对角【答案】C【分析】因为中点四边形是正方形,正方形的对角线相等且垂直均分,边形都是平行四边形,所以原四边形的对角线AC,BD相等且相互垂直【知识点】三角形中位线定理,正方形的性质

依据中位线定理可证随意四边形的中点四,应选C(2019黑龙江绥化,10题,3分)如图,正方形ABCD中,E,F是对角线AC上的两个动点,P是正方形四边上的随意一点,且AB=4,EF=2,设AE=x,当△PEF是等腰三角形时,以下对于①当x=0(即E,A两点重合)时,P点有6个;

P点个数的说法中,必定正确的选项是()②当

0<x<42

2时,P点最多有

9个;③当

P点有

8个时,x=22

2;④当△

PEF是等边三角形时

,P点有

4个.A.①③

B.①④

C.②④

D.②③第10题图【答案】B【思路剖析】依据三角形的边的关系求出角度,在圆中求出扇形圆心角,暗影部分就是△ABC的面积减去△AOD的面积和扇形BOD的面积,分别算出各图形的面积,即可获得结果.【解题过程】①以点A,点F为圆心,EF长为半径作弧,与AB,AD共有4个交点,作EF的垂直均分线,与AB,AD有2个交点,共6个交点,故点P有6个,正确;②线段EF在线段AC上运动时,当点E或点F为AC的中点时,存在8个点,使△PEF为等腰三角形,不行能存在9个点,故错误;③由②知,点E为AC的中点时,x=22,点F为AC的中点时,x=222,故错误;④作AC的平行线,与AC的距离为3,其与正方形有4个交点,故正确.应选B.【知识点】等腰三角形,正方形,等边三角形6.(2019湖北孝感,10,3分)如图,正方形BC=4,DE=AF=1,则GF的长为(

ABCD)

中,点

E、F分别在边

CD,AD

上,BE与

CF

交于点

G.若A.B.C.D.【答案】A【分析】解:正方形ABCD中,∵BC=4,BC=CD=AD=4,∠BCE=∠CDF=90°,AF=DE=1,∴DF=CE=3,∴BE=CF=5,在△BCE和△CDF中,,∴△BCE≌△CDF(SAS),∴∠CBE=∠DCF,∵∠CBE+∠CEB=∠ECG+∠CEB=90°=∠CGE,cos∠CBE=cos∠ECG∴,CG,GF=CF﹣CG=5应选:A.

,,【知识点】正方形的性质;全等三角形的判断与性质;勾股定理;锐角三角函数7.(2019湖北十堰,5,3分)矩形拥有而平行四边形不必定拥有的性质是()A.对边相等B.对角相等C.对角线相等D.对角线相互均分【答案】C【分析】解:矩形的对角线相等,而平行四边形的对角线不必定相等.应选:C.【知识点】平行四边形的性质;矩形的性质(2019湖南郴州,8,3分)我国古代数学家刘徽将勾股形(先人称直角三角形为勾股形)切割成一个正方形和两对全等的三角形,以下图,已知∠A=90°,BD=4,CF=6,则正方形ADOF的边长是()A.B.2C.D.4【答案】B【分析】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,BC=BE+CE=BD+CF=10,222在Rt△ABC中,AC+AB=BC,222即(6+x)+(x+4)=10,整理得,x2+10x﹣24=0,解得:x=2,或x=﹣12(舍去),∴x=2,即正方形ADOF的边长是2;应选:B.【知识点】数学知识;勾股定理;正方形的性质9.(2019内蒙古包头市,11题,3分)如图5,在正方形ABCD中,AB=1,点E、F分别在边BC和CD上,AE=AF,∠EAF=600,则CF的长是()A.B.C.D.【答案】C.【思路剖析】连结AC,过F作FG⊥AC于G,先依据AB=1求出AC的长;设FG=k,用k表示出AC的长,列出对于k的【解题过程】解:连结AC,∵四边形ABCD是正方形,AB=AD=1,∠B=∠D=900,AC均分∠BAD,又∵AE=AF,Rt△ABE≌Rt△ADF(HL).∴∠BAE=∠FAD,AC均分∠BAD,∴∠BAC=∠DAC=450,同理,∠ACD=∠ACB=450.∴∠CAF=∠CAE=∠EAF=300,过F作FG⊥AC于G,在Rt△ABC中,AC=设GF=k,在Rt△AFG中,AG=在Rt△CGF中,∠ACD=450,∴CG=FG=k,∴CF=.∴AC=AG+CG=k+=

.k.∴k=.∴CF==.应选C.【知识点】正方形的性质,全等三角形的判断,解直角三角形,勾股定理.10.(2019宁夏,6,3分)如图,四边形ABCD的两条对角线订交于点O,且相互均分.增添以下条件,仍不能判断四边形ABCD为菱形的是().A.ACBDB.ABADC.ACBDD.ABDCBD【答案】C【分析】因为四边形ABCD的两条对角线相互均分,所以四边形ABCD为平行四边形,因为对角线相互垂直的平行四边形是菱形,所以选项A能够判断四边形ABCD为菱形,因为有一组临边相等的平行四边形是菱形,所以选项B能够判断四边形ABCD为菱形,因为对角线相等的平行四边形为矩形,所需选项C不可以判断四边形ABCD为菱形,选项D,因为四边形ABCD为平行四边形,所以AD//BC,所以ADBCBD,又因为ABDCBD,所以ABDADB,所以ADAB,所以平行四边形ABCD为菱形,应选项D也能够判定四边形ABCD为菱形,故此题正确选项为C.【知识点】菱形的判断.11.(2019年陕西省,6,3分)如图,在Rt△ABC中,ACB90,A65,CDAB,垂足为D,E是BC的中点,连结ED,则EDC的度数是().A.25B.30C.50D.65第6题图【答案】D【分析】因为CDAB,所以ADCBDC90,所以ACD90A25,因为ACB90,所以DCE90ACD65,因为在Rt△CDB中,E是BC的中点,所以ECED,所以EDCDCE65.【知识点】直角三角形斜边上的中线等于斜边的一半、直角三角形的性质.12.(2019年陕西省,8,3分)如图,在正方形ABCD中,AB4.若以CD为底边向其形外作等腰直角△DCE,连结BE,则BE的长为().A.45B.22C.210D.23ADEBC第8题图第8题答图【答案】C【分析】如图,连结BD,因为四边形ABCD为正方形,所以BDC45,ADAB4,A90,在Rt△ABD中,由勾股定理得,BDAB2BD242,因为所△DCE是等腰直角三角形,所以CDE45,所以BDEBDCCDE90,DEECDC22,在Rt△BDE中,由勾股定理得,22BEBD2DE2210.【知识点】正方形的性质、等腰直角三角形的性质,勾股定理.13.(2019贵州省安顺市,9,3分)如图,在菱形ABCD中,按以下步骤作图:①分别以点C和点D为圆心,大于1CD为半径作弧,两弧交于点M,N两点;2②作直线MN,且MN恰巧经过点A,与CD交于点E,连结BE,则以下说法错误的选项是()A.∠ABC=60°B.S△ABE=2S△ADEC.若AB=4,则BE=4721D.sin∠CBE=14【答案】C

第9题图【思路剖析】由作法得AE垂直均分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而获得∠ABC=60°;利用AB=2DE获得S△ABE=2S△ADE;作EH⊥BC于H,如图,若AB=4,则可计算出CH=1CE=1,EH=3CH=3,利用勾股定理可计算出BE=27;利用正弦的定义得sin∠CBE=EH=2BE.14【解题过程】解:由作法得AE垂直均分CD,∴∠AED=90°,CE=DE,第9题答图∵四边形ABCD为菱形,AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;AB=2DE,S△ABE=2S△ADE,所以B选项的说法正确;作EH⊥BC于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=3CH=3,在Rt△BEH中,BE==27,所以C选项的说法错误;sin∠CBE=EH=3=21,所以D选项的说法正确.BE2714应选:C.【知识点】三角形的面积;线段垂直均分线的性质;菱形的性质;基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直均分线;作已知角的角均分线;过一点作已知直线的垂线);解直角三角形.14.(2019黑龙江大庆,6题,3分)以下说法中不正确的选项是()A.四边相等的四边形是菱形C.菱形的对角线相互垂直且相等

B.对角线垂直的平行四边形是菱形D.菱形的邻边相等【答案】C【分析】菱形的对角线相互垂直且相互均分

,不必定相等

,应选

C.【知识点】菱形的判断和性质15.(2019

广西桂林,

11,3分)将矩形

ABCD

按以下图的方式折叠,

BE,EG,FG

为折痕,若极点

A,C,D都落在点

O处,且点

B,O,G

在同一条直线上,同时点

E,O,F

在另一条直线上,则

AD

的值为

(

)ABA.6B.2C.3D.352【答案】B【分析】解:由折叠可得,AEOEDE,CGOGDG,E,G分别为AD,CD的中点,设CD2a,AD2b,则AB2aOB,DGOGCGa,BG3a,BCAD2b,C90,RtBCG中,CG2BC2BG2,即a2(2b)2(3a)2,b22a2,即b2a,b2,aAD的值为2,AB应选:B.【知识点】翻折变换(折叠问题);矩形的性质16.(2019湖北荆州,5,3分)如图,矩形ABCD的极点A,B,C分别落在∠MON的边OM,ON上,若OA=OC,要求只用无刻度的直尺作∠

MON

的均分线.小明的作法以下:连结

AC,BD

交于点

E,作射线

OE,则射线OE均分∠MON.有以下几条几何性质:

①矩形的四个角都是直角,

②矩形的对角线相互均分,

③等腰三角形的“三线合一”.小明的作法依照是(

)A.①②B.①③C.②③D.①②③【答案】C【分析】解:∵四边形ABCD为矩形,AE=CE,而OA=OC,OE为∠AOC的均分线.应选:C.【知识点】等腰三角形的性质;矩形的性质;作图—基本作图17.(2019湖南邵阳,9,3分)如图,在RtABC中,BAC90,B36,AD是斜边BC上的中线,将ACD沿AD对折,使点C落在点F处,线段DF与AB订交于点E,则BED等于()A.120B.108C.72D.36【答案】B【分析】解:在RtABC中,BAC90,B36,C90B54.AD是斜边BC上的中线,ADBDCD,BAD

B36

DAC

C54

,ADC

180

DAC

C72

.将ACD沿AD对折,使点C落在点F处,ADFADC72,BEDBADADF3672108.应选:B.【知识点】直角三角形斜边上的中线;翻折变换(折叠问题)(2019内蒙古赤峰,8,3分)如图,菱形ABCD周长为20,对角线AC、BD订交于点O,E是CD的中点,则OE的长是()A.2.5B.3C.4D.5【答案】A【分析】解:∵四边形ABCD为菱形,∴CD=BC5,且O为BD的中点,∵E为CD的中点,OE为△BCD的中位线,OECB=2.5,应选:A.【知识点】直角三角形斜边上的中线;三角形中位线定理;菱形的性质19.(2019四川泸州,10,3分)一个菱形的边长为6,面积为A.8B.12C.16【答案】【分析】解:以下图:

28,则该菱形的两条对角线的长度之和为(D.32

)∵四边形ABCD是菱形,AO=COAC,DO=BOBD,AC⊥BD,∵面积为28,AC?BD=2OD?AO=28①∵菱形的边长为6,22②,∴OD+OA=36222=36+28=64.由①②两式可得:(OD+AO)=OD+OA+2OD?AOOD+AO=8,2(OD+AO)=16,即该菱形的两条对角线的长度之和为16.应选:C.【知识点】菱形的性质;勾股定理;菱形面积公式20.(2019四川省雅安市,10,3分)如图,在四边形ABCD中,AB=CD,AC、BD是对角线,E、F、G、H分别是AD、BD、BC、AC的中点,连结EF、FG、GH、HE,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形AEDFHBGC【答案】C【思路剖析】由点E、F、G、H分别是随意四边形ABCD中AD、BD、BC、CA的中点,依据三角形中位线的性质,可得EF=GH=AB,EH=FG=CD,又由AB=CD,得EF=FG=GH=EH时,四边形EFGH是菱形.【解题过程】∵点E、F、G、H分别是随意四边形ABCD中AD、BD、BC、CA的中点,∴EF=GH=AB,EHFG=CD,∵AB=CD【知识点】中点四边形;

,∴EF=FG=GH=EH时,四边形EFGH是菱形,应选C.菱形的判断;三角形中位线二、填空题(2019广东深圳,15,3分)如图,在正方形ABCD中,BE=1,将BC沿CE翻折,点B的对应点恰巧落在对角线AC上;将AD沿AF翻折,点D的对应点恰巧落在对角线AC上,连结EF,则EF=____________.【答案】6【分析】设点B的对应点是点G,点D的对应点是点H,作FM⊥AB于点M,由折叠可知,EG=EB=AG=1,∴22AE=2;AM=DF=FH=1,∴AB=FM=2+1,EM=2-1,∴EF=EM2+FM2=(2-1)+(2+1)=6.【知识点】正方形折叠;正方形的性质;勾股定理2.(2019广西北部湾,16,3分)如图,在菱形ABCD中,对角线AC,BD交与点O,过点A作AH⊥BC于点H,已知BO=4,S菱形ABCD=24,则AH=.【答案】24.5【思路剖析】此题考察了菱形的性质、勾股定理以及菱形面积公式,依据菱形面积=对角线积的一半可求AC,再依据勾股定理求出BC,而后由菱形的面积即可得出结果.【解题过程】解:∵四边形ABCD是菱形,BO=DO=4,AO=CO,AC⊥BD,BD=8.∵S菱形ABCD=1AC×BD=24,2AC=6,OC=1AC=3,2BC=OB2OC2=5,∵S菱形ABCD=BC×AH=24,24∴AH=.5故答案为24.5【知识点】菱形的性质;勾股定理;菱形面积公式.(2019贵州黔西南州,16,3分)如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.【答案】3【分析】解:由勾股定理得,BC,∴正方形ABCD的面积=BC2=3,故答案为:3.【知识点】勾股定理4.(2019贵州遵义,个角向内对折后,点极点分别在平行四边形

15,4分)如图,平行四边形纸片B与点C重合于点C’,点A与点ABCD的四条边上,则EF=

D

ABCD的边AB,BC的长分别是10cm和重合于点A’,四条折痕围成一个信封四边形cm.

7.5cm,将其四EHFG,其【答案】10【分析】∵折叠,∴∠BEH=∠FEH,同理∠AEG=∠FEG,∵∠BEH+∠FEH+∠AEG+∠FEG=180°,所以∠HEG=90°,同理∠FGE=∠HFG=90°,所以四边形EHFG是矩形,∴EF=GH.∵对折后,点B与点C重合于点C’,∴CH=C’H=BH,∴H是BC的中点,同理G是AD的中点,∴GH=AB=10cm,∴EF=10cm【知识点】折叠的性质,矩形的性质,矩形的判断(2019湖北十堰,16,3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连结BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE=.【答案】6【分析】解:作DH⊥AE于H,如图,AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上,∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF,在Rt△ABF中,BF3,∵∠EAF=90°,∴∠BAF+∠BAH=90°,∵∠DAH+∠BAH=90°,∴∠DAH=∠BAF,在△ADH和△ABF中∠∠,∴△ADH≌△ABF(AAS),DH=BF=3,∴S△ADEAE?DH3×4=6.故答案为6.【知识点】等腰直角三角形;正方形的性质;旋转的性质6.(2019湖北十堰,12,3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为.【答案】24【分析】解:∵四边形ABCD是菱形,AB=BC=CD=AD,BO=DO,∵点E是BC的中点,OE是△BCD的中位线,CD=2OE=2×3=6,∴菱形ABCD的周长=4×6=24;故答案为:24.【知识点】直角三角形斜边上的中线;三角形中位线定理;菱形的性质7.(2019

湖北咸宁,

16,3分)如图,先有一张矩形纸片

ABCD,AB=4,BC=8,点

M,N分别在矩形的边

AD,BC上,将矩形纸片沿直线

MN

折叠,使点

C落在矩形的边

AD

上,记为点

P,点

D落在

G处,连结

PC,交MN于点Q,连结CM.以下结论:①CQ=CD;②四边形CMPN③P,A重合时,

是菱形;MN=2;④△PQM的面积S的取值范围是3≤S≤5.此中正确的选项是(把正确结论的序号都填上).【答案】②③【分析】解:如图1,PM∥CN,∴∠PMN=∠MNC,∵∠MNC=∠PNM,∴∠PMN=∠PNM,PM=PN,∵NC=NP,PM=CN,∵MP∥CN,∴四边形CNPM是平行四边形,∵CN=NP,∴四边形CNPM是菱形,故②正确;CP⊥MN,∠BCP=∠MCP,∴∠MQC=∠D=90°,∵CP=CP,若CQ=CD,则Rt△CMQ≌△CMD,∴∠DCM=∠QCM=∠BCP=30°,这个不必定建立,故①错误;点P与点A重合时,如图2,设BN=x,则AN=NC=8﹣x,2在Rt△ABN中,AB+BN

22=AN,即42+x2=(8﹣x)2,解得x=3,∴CN=8﹣3=5,AC

,∴

,∴

,MN=2QN=2.故③正确;当MN过点D时,如图3,此时,CN最短,四边形CMPN的面积最小,则S最小为S菱形当P点与A点重合时,CN最长,四边形CMPN的面积最大,则S最大为∴4≤S≤5,故④错误.故答案为:②③.【知识点】菱形的判断与性质;矩形的性质;翻折变换(折叠问题)(2019北京市,16题,2分)在矩形ABCD中,M,N,P,Q分别为边点重合).对于随意矩形ABCD,下边四个结论中,①存在无数个四边形MNPQ是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④起码存在一个四边形MNPQ是正方形.全部正确结论的序号是_______.【答案】①②③

,S,AB,BC,CD,DA上的点(不与端【思路剖析】如图16-1,经矩形ABCD对角线交点O,①任画两条和矩形对边分别订交的直线,按序连结交点获得的四边形为平行四边形,明显有无数个四边形;②任画两条和矩形对边分别订交且相等的直线,按序连结交点获得的四边形为矩形,明显有无数个四边形;③任画两条和矩形对边分别订交且垂直的直线,按序连结交点获得的四边形为菱形,明显有无数个四边形;④画两条和矩形对边分别订交,而且垂直且相等的直线,按序连结交点获得的四边形为正方形,明显只有一个四边形.【解题过程】如图16-1,O为矩形ABCD对角线的交点,①图中任过点O的两条线段PM,QN,则四边形MNPQ是平行四边形;明显有无数个.本结论正确.②图中任过点O的两条相等的线段PM,QN,则四边形MNPQ是矩形;明显有无数个.本结论正确.③图中任过点O的两条垂直的线段PM,QN,则四边形MNPQ是菱形;明显有无数个.本结论正确.④图中过点O的两条相等且垂直的线段PM,QN,则四边形MNPQ是正方形;明显有一个.本结论错误.故填:①②③.【知识点】三角形全等的性质和判断、矩形的性质和判断、平行四边形和菱形、正方形的判断.9.(2019北京市,14题,2分)把图1中的菱形沿对角线分红四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为_______.51图1图2图3【答案】12【分析】设图1中小直角三角形的两直角边长分别为a,b(a>b);则由图ab52和图3列得方程组b,由加a1a311减消元法得,∴菱形的面积S4ab43212.故填12.b222【知识点】菱形的性质、二元一次方程组的解法.(2019贵州省安顺市,17,4分)如图,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,点D为斜边BC上的一个动点,过D分别作DM⊥AB于点M,作DN⊥AC于点N,连结MN,则线段MN的最小值为.AMNB第17题图DC【答案】

125【思路剖析】连结AD,即可证明四边形AMDN是矩形;由矩形AMDN得出MN=AD,再由三角形的面积关系求出AD的最小值,即可得出结果.【解题过程】连结AD,以下图:AMNB第17题答图DCDM⊥AB,DN⊥AC,∴∠AMD=∠AND=90°,又∵∠BAC=90°,∴四边形AMDN是矩形;MN=AD,∵∠BAC=90°,AB=3,AC=4,BC=5,当AD⊥BC时,AD最短,此时△ABC的面积=1BC?AD=1AB?AC,22∴AD的最小值=ABAC12,BC5∴线段MN的最小值为12;5【知识点】垂线段最短、矩形的判断与性质、勾股定理、直角三角形面积的计算方法11.(2019黑龙江省龙东地域,10,3)如图,四边形OAA1B1是边长为1的正方形,以对角线OA1为边作第二个正方形OA1A2B2,连结AA2,获得△AA1A2;再以对角线OA2为边作第三个正方形OA2A3B3,连结A1A3,得到△A1A2A3,再以对角线OA3为边作第三个正方形OA3A4B4,连结A2A4,获得△A2A3A4,,记△AA1A2,△A1A2A3,△A2A3A4的面积分别为S1,S2,S3,这样下去,则S2019=________.A3A2A1B2B1A4OAB3【答案】22017.【思路剖析】读懂条件,理清题意,先从简单的情况下手,逐渐过渡到复杂状况,从中找到计算规律即可.【解题过程】△AA1A2中,AA1=1,AA1边上的高是1,它的面积S1=1×1×1;2△A1A2A3中,A1A2=1×2,A1A2边上的高是1×2,它的面积S2=1×1×2×1×2;2△A2A3A4中,A2A3=1×2×2,A2A3边上的高是1×2×2,它的面积S3=1×1×2×2×1×2×2;22)2018这样下去,△A201820192020中,A20182019=2222=(,A2018A2019边上的高是(2)2018,它AAA2018个2相乘的面积S20191(2)2018(2)2018=22017.=2××【知识点】正方形的性质;勾股定理;三角形的面积(2019黑龙江省龙东地域,8,3)如图,矩形ABCD中,AB=4,BC=6,点P是矩形ABCD内一动点,且S△PAB=1S△PCD,则PC+PD的最小值是________.2ADPBC【答案】45.【思路剖析】联合已知条件,依据S△PAB=1S△PCD可判断出点P在平行于AB,与AB的距离为2、与CD的距2离为4的直线上,再依据“将军饮马问题”的解法解之即可.【解题过程】过点P作直线l∥AB,作点D对于直线l的对称点D1,连结CD1,∵矩形ABCD中,AB=4,BC=6,∴CD=4,DD1=8,在Rt△CDD中,由勾股定理得CD=45,∴PC+PD的最小值是45.11D1AlDPBC【知识点】矩形的性质;勾股定理;最短路径问题13.(2019吉林长春,13,3分)如图,有一张矩形纸片ABCD,AB=8,AD=6,先将矩形纸片ABCD折叠,使边AD落在边AB上,点D落在点E处,折痕为AF;再将△AEF沿EF翻折,AF与BC订交于点G,则△GCF的周长为【答案】4+22【思路剖析】此题主要考察翻折变换以及等腰直角三角形的性质,依据折叠的性质可得CE=2,∠A=∠AFC=45°,从而得出FG的长,从而得出答案.【解题过程】解:由折叠的性质可知∠A=45°,AD=DF,∴FC=2,∠AFC=45°,∴CG=2,∴FG=22,∴△GCF的周长为4+22.故答案为4+22.【知识点】翻折变换(折叠问题);等腰直角三角形的性质.14.(2019·江苏镇江,10,2)将边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的地点(如图),使得点D落在对角线CF上,EF与AD订交于点H,则HD=.(结果保存根号)FAHDEGBC第10题图【答案】2-1.【分析】此题考察了正方形的性质、旋转、等腰三角形的判断与性质、勾股定理.由正方形的对角线与相邻的边夹角为45°,得∠CFE=∠ECF=45°,而在Rt△CEF中,由勾股定理,得CF=2,从而DF=2-1,易知△DHF是等腰直角三角形,于是DH=DF=2-1.所以此题答案为2-1.【知识点】正方形的性质;旋转;等腰三角形的判断与性质;勾股定理(2019辽宁本溪,15,3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于1EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若2AP=3,则点P到BD的距离为.【答案】3.【分析】解:过点P作PQ⊥BD,垂足为Q,依据题意可得BP均分∠ABD.∵四边形ABCD为矩形,∴∠A=90°,PA=PQ.PA=3,PQ=3,故答案为3.【知识点】角均分线的性质.16.(2019

广西贺州,

18,6

分)如图,正方形

ABCD

的边长为

4,点

E是CD

的中点,

AF

均分

BAE交BC

于点F

,将

ADE绕点

A顺时针旋转

90得

ABG

,则

CF

的长为

.【答案】625【分析】解:作FMAD于M,FNAG于N,如图,易得四边形CFMD为矩形,则FM4,正方形ABCD的边长为4,点E是CD的中点,DE2,AE2225,42ADE绕点A顺时针旋转90得ABG,AGAE25,BGDE2,34,GAE90,ABGD90,而ABC90,点G在CB的延伸线上,AF均分BAE交BC于点F,12,2413,即FA均分GAD,FNFM4,11FNAG,ABGF2242525,GF4CFCGGF4225625.故答案为625.【知识点】旋转的性质;正方形的性质17.(2019广西梧州,18,6分)如图,在菱形ABCD中,AB2,BAD60,将菱形ABCD绕点A逆时针方向旋转,对应获得菱形AEFG,点E在AC上,EF与CD交于点P,则DP的长是.【答案】31【分析】解:连结BD交AC于O,以下图:四边形ABCD是菱形,CDAB2,BCDBAD60,ACDBAC1,OAOC,ACBD,BAD302OB11,AB2OA3OB3,AC23,由旋转的性质得:AEAB2,EAGBAD60,CEACAE232,四边形AEFG是菱形,EF//AG,CEPEAG60,CEPACD90,CPE90,PE1CE31,PC3PE33,2DPCDPC2(33)31;故答案为:31.【知识点】等边三角形的判断与性质;旋转的性质;菱形的性质;含30角的直角三角形的性质;平行线的性质18.(2019

江苏镇江,

10,2分)将边长为

1的正方形

ABCD

绕点

C按顺时针方向旋转到

FECG

的地点(如图),使得点

D落在对角线

CF

上,

EF与

AD订交于点

H

,则

HD

.(结果保存根号)【答案】21【分析】解:四边形ABCD为正方形,CD1,CDA90,边长为1的正方形ABCD绕点C按顺时针方向旋转到FECG的地点,使得点D落在对角线CF上,CF2,CFDE45,DFH为等腰直角三角形,DHDFCFCD21.故答案为21.【知识点】旋转的性质;正方形的性质19.(2019江苏徐州,13,3分)【答案】16【分析】此题解答时要运用矩形的性质和三角形中位线的性质.解:∵四边形ABCD是矩形,∴OA=OB=OC=OD,M,N分别为BC,OC的中点,∴OB=2MN=2×4=8,∴AC=2OB=16.【知识点】矩形的性质;三角形中位线三、解答题1.(2019海南,21题,13分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A,D不重合),射线PE与BC的延伸线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP能否为菱形,并说明原因.第21题图【思路剖析】(1)由正方形性质获得边角关系,从而证明全等;(2)①经过证明全等获得AP=EF,由平行线的传达性获得平行,故四边形AFEP是平行四边形;②列出方程获得AP的长,与PE比较,不可以判断四边形AFEP是菱形.【解题过程】(1)证明:∵四边形ABCD是正方形,∴∠D=∠BCD=90°,∴∠ECQ=90°=∠D.∵E是CD的中点,DE=CE,又∵∠DEP=∠CEQ,∴△PDE≌△QCE;(2)①证明:如图,由(1)得△PDE≌△QCE,∴PE=QE=11PQ,又∵EF∥BC,∴PF=FB=PB,∵PB=PQ,∴PF=PE,22∴∠1=∠2,∵四边形ABCD是正方形,∴∠BAD=90°,在Rt△ABP中,F是PB的中点,∴AF=1BP=FP,∴∠32=∠4,∵AD∥BC,EF∥BC,∴AD∥EF,∴∠1=∠4,∴∠2=∠3,又∵PF=FP,∴△APF≌△EFP,∴AP=EF,又∵AP∥EF,∴四边形AFEP是平行四边形.②四边形AFEP不是菱形,原因以下:设PD=x,则AP=1-x,由(1)可知△PDE≌△QCE,∴CQ=PD=x,∴BQ=11+xBC+CQ=1+x,∵点E,F分别是PQ,PB的中点,∴EF是△PBQ的中位线,∴EF=BQ=.由①可知AP=EF,即122-x=1+x,解得x=1,∴PD=1,AP=2,在Rt△PDE中,DE=1,∴PE=PD2+DE2=13,∴AP≠PE,∴四233326边形AFEP不是菱形.第21题答图【知识点】三角形的心里,圆的对称性,等角平等边(2019黑龙江哈尔滨,24,8分)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F;(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连结AF、CE,在不增添任何协助线的状况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的1.8【思路剖析】(1)由AAS证明△ABE≌△CDF,即可得出结论;(2)由平行线的性质得出∠CBD=∠ADB=30°,由直角三角形的性质得出BE=1AB,AE=1AD,得出△22ABE的面积=1AB×AD=1矩形ABCD的面积,由全等三角形的性质得出△CDF的面积═1矩形ABCD的面888积;作EG⊥BC于G,由直角三角形的性质得出EG=11111矩形2BE=×AB=AB,得出△BCE的面积=8224ABCD的面积,同理:△ADF的面积=1矩形ABCD的面积.8【解题过程】解:1)证明:∵四边形ABCD是矩形,AB=CD,AB∥CD,AD∥BC,∴∠ABE=∠DF,AE⊥BD于点E,CF⊥BD于点F,∴∠AEB=∠CFD=90°,ABECDF在△ABE和△CDF中,AEBCFD,ABCD∴△ABE≌△CDF(AAS),AE=CF;(2)解:△ABE的面积=△CDF的面积=△BCE的面积=△ADF的面积=矩形ABCD面积的1.原因以下:8AD∥BC,∴∠CBD=∠ADB=30°,∵∠ABC=90°,∴∠ABE=60°,AE⊥BD,∴∠BAE=30°,BE=1AB,AE=1AD,22∴△ABE的面积=1BE×AE=1×1AB×1AD=1AB×AD=1矩形ABCD的面积,222288∵△ABE≌△CDF,∴△CDF的面积═1矩形ABCD的面积;8作EG⊥BC于G,以下图:∵∠CBD=30°,EG=1BE=1×1AB=1AB,2224∴△BCE的面积=1BC×EG=1BC×1AB=1BC×AB=1矩形ABCD的面积,22488同理:△ADF的面积=1矩形ABCD的面积.8【知识点】矩形的性质;全等三角形的判断与性质;含30°角的直角三角形的性质;平行线的性质;三角形面积公式3.(2019湖北仙桃,21,8分)如图,E,F分别是正方形ABCD的边CB,DC延伸线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的均分线CG于点G,连结GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.【思路剖析】(1)由SAS证明△ABE≌△BCF得出AE=BF,∠BAE=∠CBF,由平行线的性质得出∠CBF=∠CEG,证出AE⊥EG,即可得出结论;2)延伸AB至点P,使BP=BE,连结EP,则AP=CE,∠EBP=90°,证明△APE≌△ECG得出AE=EG,证出EG=BF,即可得出结论.【解题过程】解:(1)∵四边形ABCD是正方形,AB=BC,∠ABC=∠BCD=90°,∴∠ABE=∠BCF=90°,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),AE=BF,∠BAE=∠CBF,∵EG∥BF,∴∠CBF=∠CEG,∵∠BAE+∠BEA=90°,∴∠CEG+∠BEA=90°,AE⊥EG,AE⊥BF;2)延伸AB至点P,使BP=BE,连结EP,以下图:则AP=CE,∠EBP=90°,∴∠P=45°,∵CG为正方形ABCD外角的均分线,∴∠ECG=45°,∴∠P=∠ECG,由(1)得∠BAE=∠CEG,∠∠在△APE和△ECG中,,∴△APE≌△ECG(ASA),AE=EG,∵AE=BF,EG=BF,∵EG∥BF,∴四边形BEGF是平行四边形.【知识点】全等三角形的判断与性质;平行四边形的判断与性质;正方形的性质(2019湖北咸宁,18,7分)在Rt△ABC中,∠C=90°,∠A=30°,D,E,F分别是AC,AB,BC的中点,连结ED,EF.(1)求证:四边形DEFC是矩形;(2)请用无刻度的直尺在图中作出∠ABC的均分线(保存作图印迹,不写作法).【思路剖析】(1)第一证明四边形DEFC是平行四边形,再依占有一个角是直角的平行四边形是矩形即可判断.2)连结EC,DF交于点O,作射线BO即可.解题过程】解:(1)证明:∵D,E,F分别是AC,AB,BC的中点,∴DE∥FC,EF∥CD,∴四边形DEFC是平行四边形,∵∠DCF=90°,∴四边形DEFC是矩形.(2)连结EC,DF交于点O,作射线BO,射线BO即为所求.【知识点】直角三角形斜边上的中线;三角形中位线定理;矩形的判断与性质;作图(2019湖南湘西,21,8分)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.1)求证:△ABF≌△CBE;2)若AB=4,AF=1,求四边形BEDF的面积.【思路剖析】(1)利用SAS即可证明;2)用正方形面积减去两个全等三角形的面积即可.【解题过程】解:1)在△ABF和△CBE中,∴△ABF≌△CBE(SAS);(2)由已知可得正方形ABCD面积为16,△ABF面积=△CBE面积4×1=2.所以四边形BEDF的面积为16﹣2×2=12.【知识点】全等三角形的判断与性质;正方形的性质6.(2019年陕西省,18,5分)(此题5分)如图,点E、F分别在菱形ABCD的边DC、DA上,且CEAF.求证:ABFCBE.【思路剖析】依据菱形的性质,能够获得菱形的四条边相等,对角相等,从而能够证明△ADE≌△ABC,所以ABFCBE,故得证.【解题过程】证明:因为四边形ABCD为菱形,所以ABBC,AC,在△AFB与△CEB中,因为ABBC,CEAF,AC,所以△APE≌△ABP,所以ABFCBE.【知识点】菱形的性质定理、全等三角形的判断、全等三角形的性质.(2019北京市,20题,5分)如图20-1,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连结EF.(1)求证:AC⊥EF;(2)如图20-2,延伸EF交CD的延伸线于点G,连结BD交AC于点O,若BD=4,tanG=1,求AO的长.2【思路剖析】)(1)由四边形ABCD为菱形易得AB=AD,AC均分∠BAD,联合BE=DF,依据等腰△AEF中的三线合一,证得AC⊥EF.(2)菱形ABCD1OCOC中有AC⊥BD,联合AC⊥EF得BD∥EF.从而有tanODCtanGOD;得出OA22的值.【解题过程】(1)证明:∵四边形ABCD为菱形AB=AD,AC均分∠BADBE=DFABBEADDFAE=AF∴△AEF是等腰三角形AC均分∠BADAC⊥EF2)解:∵菱形ABCD中有AC⊥BD,联合AC⊥EF.BD∥EF.1又∵BD=4,tanG=21OCOC∴tanODCtanGOD22∴AO=1AC=OC=1.2【知识点】菱形的性质、等腰三角形的性质、正切的定义.8.(2019黑龙江大庆,23题,7分)如图在矩形ABCD中,AB=3,BC=4,M,N在对角线AC上,且AM=CN,E,F分别是AD,BC的中点.求证:△ABM≌△CDN;点G是对角线AC上的点,∠EGF=90°,求AG的长.第25题图【思路剖析】(1)由矩形的性质能够获得对应边对应角相等,从而证得全等;(2)以EF为直径作圆,找到点G的地点,从而计算求得AG的长度.【解题过程】(1)在矩形ABCD中,AB∥CD,所以∠BAM=∠DCN,又因为AB=CD,AM=CN,所以△ABM≌△CDN(SAS);(2)以EF为直径作圆,交AC于点G1,G2,连结EG1,FG1,EG2,FG2,则∠EG1F=∠EG2F=90°,因为EF=AB=3,所以G1H=G2H=1EF=3,在Rt△ABC中,AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论