版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知正比例函数的图象如图所示,则一次函数y=mx+n图象大致是()A. B.C. D.2.如图,两个正方形的面积分别为,,两阴影部分的面积分别为,(),则等于().A. B. C. D.3.如果等腰三角形两边长是6和3,那么它的周长是()A.15或12 B.9 C.12 D.154.如图,l1//l2,▱ABCD的顶点A在l1上,BC交l2于点E,若A.100∘ B.90∘ C.805.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:该店主决定本周进货时,增加了一些41码的衬衫,影响该店主决策的统计量是()A.平均数B.方差C.众数D.中位数6.对四边形ABCD加条件,使之成为平行四边形,下面的添加不正确的是()A.AB=CD,AB∥CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AC与BD相互平分7.在平面直角坐标系中,点与点关于原点对称,则的值为()A. B. C.1 D.38.下列条件中能构成直角三角形的是()A.a=3,b=4,c=6 B.a=5,b=6,c=7C.a=6,b=8,c=9 D.a=5,b=12,c=139.把不等式x+2≤0的解集在数轴上表示出来,则正确的是()A. B. C. D.10.下列图案中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分 B.87.6分 C.88分 D.88.5分12.估计的值在下列哪两个整数之间()A.6和7之间 B.7和8之间 C.8和9之间 D.无法确定二、填空题(每题4分,共24分)13.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.14.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C,A’B’交AC于点D,若∠A’DC=90°,则∠A=°.15.正八边形的一个内角的度数是度.16.如图,在▱ABCD中,∠ADO=30°,AB=8,点A的坐标为(﹣3,0),则点C的坐标为_____.17.如图,点P是平面坐标系中一点,则点P到原点的距离是_____.18.在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.三、解答题(共78分)19.(8分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.1.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.20.(8分)李大伯响应国家保就业保民生政策合法摆摊,他预测某品牌新开发的小玩具能够畅销,就用3000元购进了一批小玩具,上市后很快脱销,他又用8000元购进第二批小玩具,所购数量是第一批购进数量的2倍,但每个进价贵了5元.(1)求李大伯第一次购进的小玩具有多少个?(2)如果这两批小玩具的售价相同,且全部售完后总利润率不低于20%,那么每个小玩具售价至少是多少元?21.(8分)如图,在平面直角坐标系中,正比例函数y=kx与函数y=6xx>0的图象相交于点A2,m,AB⊥x轴于点B.平移直线y=kx,使其经过点22.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)①作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;②作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(2)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(-4,-2),请直接写出直线l的函数解析式.23.(10分)2018年5月,某城遭遇暴雨水灾,武警战士乘一冲锋舟从A地逆流而上,前往C地营救受困群众,途经B地时,由所携带的救生艇将B地受困群众运回A地,冲锋舟继续前进,到C地接到群众后立刻返回A地,途中曾与救生艇相遇,冲锋舟和救生艇距A地的距离y(千米)和冲锋舟出发后所用时间x(分)之间的函数图象如图所示,假设群众上下冲锋舟和救生艇的时间忽略不计,水流速度和冲锋舟在静水中的速度不变.(1)冲锋舟从A地到C地的时间为分钟,冲锋舟在静水中的速度为千米/分,水流的速度为千米/分.(2)冲锋舟将C地群众安全送到A地后,又立即去接应救生艇,已知救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b,若冲锋舟在距离A地千米处与救生艇第二次相遇,求k、b的值.24.(10分)如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,C在y轴上,反比例函数的图象分别交BC,AB于E,F,已知,.(1)求k的值;(2)若,求点E的坐标.25.(12分)某手机店销售部型和部型手机的利润为元,销售部型和部型手机的利润为元.(1)求每部型手机和型手机的销售利润;(2)该手机店计划一次购进,两种型号的手机共部,其中型手机的进货量不超过型手机的倍,设购进型手机部,这部手机的销售总利润为元.①求关于的函数关系式;②该手机店购进型、型手机各多少部,才能使销售总利润最大?(3)在(2)的条件下,该手机店实际进货时,厂家对型手机出厂价下调元,且限定手机店最多购进型手机部,若手机店保持同种手机的售价不变,设计出使这部手机销售总利润最大的进货方案.26.已知:如图,在等腰梯形中,,,为的中点,设,.(1)填空:________;________;________;(用,的式子表示)(2)在图中求作.(不要求写出作法,只需写出结论即可)
参考答案一、选择题(每题4分,共48分)1、C【解析】
利用正比例函数的性质得出>0,根据m、n同正,同负进行判断即可.【详解】.解:由正比例函数图象可得:>0,mn同正时,y=mx+n经过一、二、三象限;mn同负时,过二、三、四象限,故选C.【点睛】本题考查了正比例函数的性质,熟练掌握正比例函数的性质是解题的关键.2、A【解析】
设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差.【详解】设重叠部分面积为c,a-b=(a+c)-(b+c)=16-9=7,故选A.【点睛】本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.3、D【解析】
由已知可得第三边是6,故可求周长.【详解】另外一边可能是3或6,根据三角形三边关系,第三边是6,所以,三角形的周长是:6+6+3=15.故选D【点睛】本题考核知识点:等腰三角形.解题关键点:分析等腰三角形三边的关系.4、B【解析】
由平行四边形的性质得出∠BAD=∠C=100°,AD∥BC,由平行线的性质得出∠2=∠ADE,∠ADE+∠BAD+∠1=180°,得出∠1+∠2=180°-∠BAD=80°即可.【详解】解:∵四边形ABCD是平行四边形,
∴∠BAD=∠C=100°,AD∥BC,
∴∠2=∠ADE,
∵l1∥l2,
∴∠ADE+∠BAD+∠1=180°,
∴∠1+∠2=180°-∠BAD=80°;
故选:C.【点睛】本题考查了平行四边形的性质、平行线的性质;熟练掌握平行四边形的性质和平行线的性质是解题的关键.5、C【解析】试题分析:用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].41码共20件,最多,41码是众数,故选C考点:方差;加权平均数;中位数;众数6、B【解析】分析:根据平行四边形的判定定理即可得到结论.详解:∵AB=CD,AB∥CD,
∴四边形ABCD是平行四边形,
∵AB∥CD,AD=BC,∴四边形ABCD是平行四边形或梯形,∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,
∵AC与BD相互平分,
∴四边形ABCD是平行四边形,
故选B.点睛:本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7、C【解析】
直接利用关于原点对称点的性质得出a,b的值,进而得出答案【详解】解:点与点关于原点对称,,,.故选:.【点睛】此题主要考查了关于原点对称点的性质,正确得出a,b的值是解题关键.8、D【解析】
由勾股定理的逆定理,判定的是直角三角形.【详解】A.32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B.52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C.62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D.52+122=132,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.【点睛】本题考查勾股定理的逆定理,如果三角形的三边长a,b,c满足,那么这个三角形是直角三角形.9、D【解析】试题分析:根据一元一次不等式的解法解不等式x+1≤0,得x≤﹣1.表示在数轴上为:.故选D考点:不等式的解集10、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,也是中心对称图形,故此选项正确;C.是轴对称图形,不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、B【解析】
根据加权平均数的计算方法进行计算即可得出答案.故选B.【详解】解:(分).【点睛】本题考查了加权平均数.理解“权”的含义是解题的关键.12、B【解析】
先判断在2和3之间,然后再根据不等式的性质判断即可.【详解】解:,∵2<<3,∴7<10﹣<8,即的值在7和8之间.故选B.【点睛】无理数的估算是本题的考点,判断出在2和3之间时解题的关键.二、填空题(每题4分,共24分)13、2或.【解析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【点睛】本题主要考查平行四边形的性质及解一元一次方程.14、55.【解析】
试题分析:∵把△ABC绕点C按顺时针方向旋转35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考点:1.旋转的性质;2.直角三角形两锐角的关系.15、135【解析】
根据多边形内角和定理:(n﹣2)•180°(n≥3且n为正整数)求出内角和,然后再计算一个内角的度数即可.【详解】正八边形的内角和为:(8﹣2)×180°=1080°,每一个内角的度数为:1080°÷8=135°,故答案为135.16、(8,33)【解析】
根据30度直角三角形的性质得到AD,由勾股定理得到DO,再根据平行线的性质即可得到答案.【详解】∵点A坐标为(﹣3,0)∴AO=3∵∠ADO=30°,AO⊥DO∴AD=2AO=6,∵DO=A∴DO=33∴D(0,33)∵四边形ABCD是平行四边形∴AB=CD=8,AB∥CD∴点C坐标(8,33)故答案为(8,33)【点睛】本题考查30度直角三角形的性质、勾股定理和平行线的性质,解题的关键是掌握30度直角三角形的性质、勾股定理和平行线的性质.17、1【解析】
连接PO,在直角坐标系中,根据点P的坐标是(),可知P的横坐标为,纵坐标为,然后利用勾股定理即可求解.【详解】连接PO,∵点P的坐标是(),
∴点P到原点的距离==1.故答案为:1【点睛】此题主要考查学生对勾股定理、坐标与图形性质的理解和掌握,解答此题的关键是明确点P的横坐标为,纵坐标为.18、.【解析】
解:画树状图得:∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,∴能组成分式的概率是故答案为.【点睛】此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题(共78分)19、(1)50;(2)2【解析】
(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;(2)因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【详解】(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.1)=50(个)(2)设小明放入红球x个.根据题意得:解得:x=2(个).经检验:x=2是所列方程的根.答:小明放入的红球的个数为2.【点睛】本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.20、(1)200个;(2)至少是22元【解析】
(1)设李大伯第一次购进的小玩具有x个,则第二次购进的小玩具有2x个,根据单价=总价÷数量结合第二次购进的单价比第一次贵5元,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设每个小玩具售价是y元,根据利润=销售收入-成本结合总利润率不低于20%,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设李大伯第一次购进的小玩具有x个,由题意得:,解这个方程,得.经检验,是所列方程的根.答:李大伯第一次购进的小玩具有200个.(2)设每个小玩具售价为元,由题意得:,解这个不等式,得,答:每个小玩具的售价至少是22元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.21、y=3【解析】
求出A点的坐标,求出B点的坐标,再用待定系数法求出正比例函数的解析式,最后求出一次函数的解析式即可.【详解】解:将A(2,m)代入y=6x∵AB⊥x轴于点B,∴B(2,0).将A(2,3)代入y=kx中,3=2k∴设直线l所对应的函数表达式为y=3将∴B(2,0)代入上式,得0=3+b,解得b=-3.∴直线l所对应的函数表达式是y=3故答案为:y=3【点睛】本题考查平移的性质,反比例函数图象上点的坐标特征,用待定系数法求函数的解析式等知识点,能用待定系数法求出函数的解析式是解题的关键.22、(1)作图见解析,C1的坐标C1(-1,2),C2的坐标C2(-3,-2);(2)y=-x.【解析】分析:(1)①利用正方形网格特征和平移的性质写出A、B、C对应点A1、B1、C1的坐标,然后在平面直角坐标系中描点连线即可得到△A1B1C1.②根据关于原点对称的点的特征得出A2、B2、C2的坐标,然后在平面直角坐标系中描点连线即可得到△A2B2C2.(2)根据A与A3的点的特征得出直线l解析式.详解:(1)如图所示,C1的坐标C1(-1,2),C2的坐标C2(-3,-2)(2)解:∵A(2,4),A3(-4,-2),∴直线l的函数解析式:y=-x.点睛:本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平移变换.23、(1)24,,(2)-,1【解析】
(1)根据题意和函数图象中的数据,可以解答本题;
(2)根据题意和函数图象中的数据,可以求得k、b的值,本题得以解决.【详解】(1)由图象可得,冲锋舟从A地到C地的时间为12×(20÷10)=24(分钟),设冲锋舟在静水中的速度为a千米/分钟,水流的速度为b千米/分钟,,解得,,故答案为:24,,;(2)冲锋舟在距离A地千米时,冲锋舟所用时间为:=8(分钟),∴救生艇与A地的距离y(千米)和冲锋舟出发后所用时间x(分钟)之间的函数关系式为y=kx+b过点(12,10),(52,),,解得,,即k、b的值分别是-,1.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想和一次函数的性质解答.24、(1)6;(2).【解析】
(1),,的坐标为,点F在反比例
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 展览展示策划公司合伙协议
- 医疗设备采购合同管理
- 果园菜场租赁条款
- 医疗设备租赁公司招聘合同范例
- 医疗器械保养操作方案
- 企业购房合同模板二手房买卖
- 大型项目合同搅拌站租赁合同
- 建筑垃圾清理起重机服务协议
- 垃圾焚烧发电招投标文件目录
- 新能源项目在线招投标模板
- 2024年深圳市福田区选用机关事业单位辅助人员和社区专职工作者365人高频难、易错点500题模拟试题附带答案详解
- T-CECS120-2021套接紧定式钢导管施工及验收规程
- 人教版八年级上册数学期中考试试题含答案详解
- 美国实时总统大选报告
- 大学体育理论(山东联盟)智慧树知到课后章节答案2023年下泰山学院
- 研究生二级学科证明
- 六年级上册英语教案 Module 9 Unit 2 I want to go to Shanghai. 外研版(三起)
- 从PK-PD看抗菌药物的合理应用
- 癃闭中医护理方案解答
- MCGS与1500连接配置说明
- 高边坡支护脚手架搭设方案
评论
0/150
提交评论