陕西省安康市汉滨2022-2023学年数学八下期末预测试题含解析_第1页
陕西省安康市汉滨2022-2023学年数学八下期末预测试题含解析_第2页
陕西省安康市汉滨2022-2023学年数学八下期末预测试题含解析_第3页
陕西省安康市汉滨2022-2023学年数学八下期末预测试题含解析_第4页
陕西省安康市汉滨2022-2023学年数学八下期末预测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知一次函数y=1-kx+k,若y随着x的增大而增大,且它的图象与y轴交于负半轴,则直线y=kx+k的大致图象是(A. B. C. D.2.如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于()A.135° B.45° C.22.5° D.30°3.在方差公式中,下列说法不正确的是()A.n是样本的容量 B.是样本个体 C.是样本平均数 D.S是样本方差4.在平面直角坐标系中,点向上平移2个单位后的对应点的坐标为()A. B. C. D.5.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.106.要使二次根式有意义,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥37.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1队员2队员3队员4平均数(秒)51505150方差(秒2)3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1 B.队员2 C.队员3 D.队员48.赵老师是一名健步走运动的爱好者为备战2019中国地马拉松系列赛·广元站10千米群众健身赛,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图在每天健步走的步数这组数据中,众数和中位数分别是()A.2.2,2.3 B.2.4,2.3 C.2.4,2.35 D.2.3,2.39.如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形10.反比例函数图象上有三个点,,,若,则的大小关系是()A. B. C. D.11.边长为4的等边三角形的面积是()A.4 B.4 C.4 D.12.如图,正方形的边长为4,点是的中点,点从点出发,沿移动至终点,设点经过的路径长为,的面积为,则下列图象能大致反映与函数关系的是()A. B. C. D.二、填空题(每题4分,共24分)13.数据1,3,5,6,3,5,3的众数是______.14.如图,香港特别行政区区徽由五个相同的花瓣组成,它是以一个花瓣为基本图案通过连续四次旋转所组成,这四次旋转中,旋转角度最小是______°.15.如图,在正方形中,点、在对角线上,分别过点、作边的平行线交于点、,作边的平行线交于点、.若,则图中阴影部分图形的面积和为_____.16.因式分解:a2﹣6a+9=_____.17.一组数据10,9,10,12,9的中位数是__________.18.如图,平行四边形的周长为,相交于点,交于点,则的周长为________.三、解答题(共78分)19.(8分)在平面直角坐标系中,的位置如图所示(每个小方格都是边长1个单位长度的正方形).(1)将沿轴方向向左平移6个单位,画出平移后得到的.(2)将绕着点顺时针旋转,画出旋转后得到的;直接写出点的坐标.(3)作出关于原点成中心对称的,并直接写出的坐标.20.(8分)若变量z是变量y的函数,同时变量y是变量x的函数,那么我们把变量z叫做变量x的“迭代函数”.例如:z2y3,yx1,则z2x132x1,那么z2x1就是z与x之间的“迭代函数”解析式.(1)当2006x2020时,zy2,,请求出z与x之间的“迭代函数”的解析式及z的最小值;(2)若z2ya,yax24axba0,当1x3时,“迭代函数”z的取值范围为1z17,求a和b的值;(3)已知一次函数yax1经过点1,2,zay2b2ycb4(其中a、b、c均为常数),聪明的你们一定知道“迭代函数”z是x的二次函数,若x1、x2(x1x2)是“迭代函数”z3的两个根,点x3,2是“迭代函数”z的顶点,而且x1、x2、x3还是一个直角三角形的三条边长,请破解“迭代函数”z关于x的函数解析式.21.(8分)如图,正方形中,点、、分别是、、的中点,、交于,连接、.下列结论:①;②;③;④.正确的有()A.1个 B.2个 C.3个 D.4个22.(10分)计算:(1)(2)已知a=+2,b=﹣2,求a2﹣b2的值.23.(10分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号项目123456笔试成绩/分859284908480面试成绩/分908886908085根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分).(1)这6名选手笔试成绩的中位数是________分,众数是________分;(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比;(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.24.(10分)已知一次函数y=图象过点A(2,4),B(0,3)、题目中的矩形部分是一段因墨水污染而无法辨认的文字.(1)根据信息,求题中的一次函数的解析式.(2)根据关系式画出这个函数图象.25.(12分)如图1,矩形的顶点、分别在轴与轴上,且点,点,点为矩形、两边上的一个点.(1)当点与重合时,求直线的函数解析式;(2)如图②,当在边上,将矩形沿着折叠,点对应点恰落在边上,求此时点的坐标.(3)是否存在使为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.26.某同学上学期的数学历次测验成绩如下表所示:测验类别平时测验期中测验期末测验第1次第2次第3次成绩100106106105110(1)该同学上学期5次测验成绩的众数为,中位数为;(2)该同学上学期数学平时成绩的平均数为;(3)该同学上学期的总成绩是将平时测验的平均成绩、期中测验成绩、期末测验成绩按照2:3:5的比例计算所得,求该同学上学期数学学科的总评成绩(结果保留整数)。

参考答案一、选择题(每题4分,共48分)1、D【解析】

一次函数y=(1-k)x+k中y随x的增大而增大,且与y轴负半轴相交,即可确定k的符号,即可求解.【详解】解:∵一次函数y=(1-k)x+k中y随x的增大而增大,∴1-k>0,∴k<1∵一次函数y=(1-k)x+k与y轴负半轴相交,∴k<0,∴综合上述得:k<0,∴直线y=kx+k的大致图象如图:故选:D.【点睛】此题主要考查了一次函数图象与系数的关系,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.2、C【解析】

根据正方形、菱形的性质解答即可.【详解】∵AC是正方形的对角线,∴∠BAC=12∵AF是菱形AEFC的对角线,∴∠FAB=12∠BAC=1故选C.【点睛】本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.3、D【解析】

根据方差公式中各个量的含义直接得到答案.【详解】A,B,C都正确;是样本方差,故D选项错误.故选D.4、B【解析】

根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:把点A(﹣4,﹣3)向上平移2个单位后的对应点A1的坐标为(﹣4,﹣3+2),即(﹣4,﹣1),故选:B.【点睛】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.5、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.6、B【解析】分析:根据二次根式有意义的条件回答即可.详解:由有意义,可得3-x≥0,解得:x≤3.故选B.点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式有意义,被开方数为非负数.7、B【解析】

据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.

故选B.【点睛】考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8、B【解析】

中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【详解】由条形统计图中出现频数最大条形最高的数据是在第四组,故众数是2.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是2.3(万步),故中位数是2.3(万步).故选B.【点睛】此题考查中位数,条形统计图,解题关键在于看懂图中数据9、D【解析】

证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.【详解】解:∵四边形AGFE为矩形,

∴∠GAE=90°,∠EAB=90°;

由题意,△AEF绕点A旋转得到△ABC,

∴AF=AC;∠FAE=∠CAB,

∴∠FAC=∠EAB=90°,

∴△ACF是等腰直角三角形.

故选:D.【点睛】本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.10、A【解析】

反比例函数图象在一三象限,在每个象限内,随的增大而减小,点,,,,,在图象上,且,可知点,,,在第三象限,而,在第一象限,根据函数的增减性做出判断即可.【详解】解:反比例函数图象在一三象限,随的增大而减小,又点,,,,,在图象上,且,点,,,在第三象限,,点,在第一象限,,,故选:.【点睛】考查反比例函数的图象和性质,当时,在每个象限内随的增大而减小,同时要注意在同一个象限内,不同象限的要分开比较,利用图象法则更直观.11、C【解析】

如图,根据等边三角形三线合一的性质可以求得高线AD的长度,根据BC和AD即可求得三角形的面积.【详解】解:如图,∵△ABC是等边三角形,AD⊥BC,∴BD=DC=2,在Rt△ABD中,AB=4,BD=2,∴AD=,∴S△ABC=BC·AD==4,故选C.【点睛】本题考查了等边三角形的性质、勾股定理有应用、三角形的面积等,熟练掌握相关性质以及定理是解题的关键.12、C【解析】

结合题意分情况讨论:①当点P在AE上时,②当点P在AD上时,③当点P在DC上时,根据三角形面积公式即可得出每段的y与x的函数表达式.【详解】①当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,∴,②当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,,,,③当点在上时,∵正方形边长为4,为中点,∴,∵点经过的路径长为,∴,,∴,综上所述:与的函数表达式为:.故答案为:C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y随x的变化而变化的趋势.二、填空题(每题4分,共24分)13、3【解析】

根据众数的定义:众数是指一组数据中出现次数最多的数据,利用众数的定义进行解答即可.【详解】因为数据1,3,5,6,3,5,3,中出现次数最多的数据是3,所以这组数据的众数是3,故答案为:3.【点睛】本题主要考查众数的定义,解决本题的关键是要熟练掌握众数的定义.14、72【解析】试题解析:观察图形可知,中心角是由五个相同的角组成,∴旋转角度是∴这四次旋转中,旋转角度最小是故答案为72.15、2【解析】

首先根据已知条件,可得出矩形BEPF和矩形BHQG是正方形,阴影部分面积即为△ABD的面积,即可得解.【详解】解:由已知条件,得∠DBC=∠ABD=∠BPE=∠BQH=45°,∴矩形BEPF和矩形BHQG是正方形,又∵BP、BQ分别为正方形BEPF和正方形BHQG的对角线∴,∴阴影部分的面积即为△ABD的面积,∴故答案为2.【点睛】此题主要考查正方形的判定,然后利用其性质进行等量转换,即可解题.16、【解析】

试题分析:直接运用完全平方公式分解即可.a2-6a+9=(a-3)2.考点:因式分解.17、1【解析】

根据中位数的意义,将数据排序后找中间位置的数会中间两个数的平均数即可.【详解】将数据按从小到大排列为:9,9,1,112,处于中间位置也就是第3位的是1,因此中位数是1,

故答案为:1.【点睛】此题考查中位数的意义,理解中位数的意义,掌握中位数的方法是解题关键.18、1【解析】

根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】解:∵平行四边形ABCD,

∴AD=BC,AB=CD,OA=OC,

∵EO⊥AC,

∴AE=EC,

∵AB+BC+CD+AD=16,

∴AD+DC=1,

∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=1,

故答案为1.【点睛】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力,题目较好,难度适中.三、解答题(共78分)19、(1)见解析;(2)见解析;;(3)见解析;.【解析】

(1)图形的平移时,我们只需要把三个顶点ABC,按照点的平移方式,平移得到新点,然后顺次连接各点即为平移后的.(2)首先只需要画出B,C旋转后的对应点,,然后顺次连接各点即为旋转过后的,然后写出坐标即可;(3)首先依次画出点ABC关于原点成中心对称的对应点,然后顺次连接各点即可得到,然后写出坐标即可.【详解】解:(1)如图所示;(2)如图所示,由图可知;(3)如图所示,由图可知.【点睛】本题的解题关键是:根据图形平移、旋转、中心对称的性质,找到对应点位置,顺次连接对应点即是变化后的图形;这里需要注意的是运用点的平移时,横坐标满足“左(移)减右(移)加”,纵坐标满足“下(移)减上(移)加;旋转时找准旋转中心和旋转角度,再进行画图.20、(1)z=-x+6;-1004;(2)或;(3)【解析】

(1)把代入zy2中化简即可得出答案;(2)把yax24axba0代入z2ya整理得z=2a(x-2)2-7a+2b,再分两种情况讨论,分别得方程组和,求解即可得;(3)把(1,2)代入y=ax+1解得a=1,得出y=x+1,再将y=x+1代入z=ay2+(b-2)y+c-b+4得,根据点x3,2是“迭代函数”z的顶点得出,再根据当z=3时,解得,又x1、x2、x3是一个直角三角形的三条边长得,代入解得b=-8,c=15,从而得解。【详解】解:(1)把代入zy2中得:z()2=-x+6∵-<0,∴z随着x的增大而减小,∵2006x2020,∴当x=2020时,z有最小值,最小值为z=-×2020+6=-1004故答案为:z=-x+6;-1004(2)把yax24axba0代入z2ya,得z2(ax24axb)a=2ax28axba,=2a(x-2)2-7a+2b这是一个二次函数,图象的对称轴是直线x=2,当a>0时,由函数图象的性质可得x=-1时,z=17;x=3时,z=-1;∴解得当a<0时,由函数图象的性质可得x=-1时,z=-1;x=3时,z=17;∴解得综上,或(3)把(1,2)代入y=ax+1得a+1=2解得a=1∴y=x+1把y=x+1代入z=ay2+(b-2)y+c-b+4并整理得∵点x3,2是“迭代函数”z的顶点,整理得当z=3时,解得又∵x1x2∴x1x3x2又∵x1、x2、x3还是一个直角三角形的三条边长∴即解得∴把代入解得c=15∴故答案为:【点睛】本题考查了二次函数和“迭代函数”,理解“迭代函数”的概念和函数的性质是解题的关键。21、C【解析】

连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,易证得CE⊥DF与AH⊥DF,根据垂直平分线的性质,即可证得AG=AD,AG≠DG,由直角三角形斜边上的中线等于斜边的一半,即可证得HG=AD,根据等腰三角形的性质,即可得∠CHG=∠DAG.则问题得解.【详解】∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=90°,∵点E、F、H分别是AB、BC、CD的中点,∴BE=CF,在△BCE与△CDF中,,∴△BCE≌△CDF,(SAS),∴∠ECB=∠CDF,∵∠BCE+∠ECD=90°,∴∠ECD+∠CDF=90°,∴∠CGD=90°,∴CE⊥DF;故①正确;在Rt△CGD中,H是CD边的中点,∴HG=CD=AD,即2HG=AD;故④正确;连接AH,如图所示:同理可得:AH⊥DF,∵HG=HD=CD,∴DK=GK,∴AH垂直平分DG,∴AG=AD;若AG=DG,则△ADG是等边三角形,则∠ADG=60°,∠CDF=30°,而CF=CD≠DF,∴∠CDF≠30°,∴∠ADG≠60°,∴AG≠DG,故②错误;∴∠DAG=2∠DAH,同理:△ADH≌△DCF,∴∠DAH=∠CDF,∵GH=DH,∴∠HDG=∠HGD,∴∠GHC=∠HDG+∠HGD=2∠CDF,∴∠CHG=∠DAG;故③正确;正确的结论有3个,故选C.【点睛】此题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质以及垂直平分线的性质等知识.此题综合性很强,难度较大,解题的关键是注意数形结合思想的应用.22、(1)原式=5;(2)原式=8【解析】

(1)根据完全平方公式、二次根式的乘法和加法可以解答本题;(2)根据a、b的值可以求得a+b、a-b的值,从而可以求得所求式子的值.【详解】解:(1)==5(2)∵,∴,∴==【点睛】本题考查二次根式的化简求值,解答本题的关键是明确二次根式化简求值的方法.23、(1)84.5,84;(2)笔试成绩和面试成绩所占的百分比分别是40%,60%;(3)综合成绩排序前两名的人选是4号和2号选手.【解析】试题分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.试题解析:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;(2)设笔试成绩和面试成绩各占的百分比是x,y,根据题意得:x+y=185x+90y=88解得:x=0.4y=0.6笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.考点:1.加权平均数;2.中位数;3.众数;4.统计量的选择.24、(1)y=x+1;(2)见解析.【解析】

(1)设一次函数的解析式是y=kx+b,把A(0,1)、B(2,4)代入得出方程组,求出方程组的解即可;

(2)过A、B作直线即可;【详解】(1)解:设一次函数的解析式是y=kx+b,

∵把A(0,1)、B(2,4)代入得:解得:k=0.5,b=1,

∴一次函数的解析式是y=x+1.(2)解:如图【点睛】本题考查用待定系数法求一次函数的解析式,一次函数的图象画法等知识的应用,解题关键是熟练掌握一次函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论