版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.若关于的不等式组至少有四个整数解,且关于的分式方程的解为整数,则符合条件的所有整数有()A.3个 B.4个 C.5个 D.2个2.如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是()A. B. C. D.3.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为A.1 B.2C.3 D.44.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个 B.7个 C.8个 D.9个5.下列命题,是真命题的是()A.对角线互相垂直的四边形是菱形 B.对角线相等的四边形是矩形C.对角线互相垂直平分的四边形是正方形 D.对角线相等的菱形是正方形6.要使二次根式有意义,x的取值范围是()A.x≠-3 B.x≥3 C.x≤-3 D.x≥-37.如图,将一条宽为1的矩形纸条沿AC折叠,若,则BC的长是A.3 B.2 C.5 D.18.如图,在4×4的网格纸中,ABC的三个顶点都在格点上,现要在这张网格纸的四个格点M,N,P,Q中找一点作为旋转中心.将ABC绕着这个中心进行旋转,旋转前后的两个三角形成中心对称,且旋转后的三角形的三个顶点都在这张4×4的网格纸的格点上,那么满足条件的旋转中心有()A.点M,点N B.点M,点Q C.点N,点P D.点P,点Q9.如图,等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是()A.0 B.1 C.2 D.310.若最简二次根式2与是同类二次根式,则a的值为()A. B.2 C.﹣3 D.11.要使代数式有意义,则的取值范围是A. B. C. D.12.如图,E是正方形ABCD的边BC的延长线上一点,若CE=CA,AE交CD于F,则∠FAC的度数是()A.22.5° B.30° C.45° D.67.5°二、填空题(每题4分,共24分)13.如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时,为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)14.一个弹簧不挂重物时长,挂上重物后伸长的长度与所挂重的质量成正比。如果挂上的质量后弹簧伸长,则弹簧的总长(单位:)关于所挂重物(单位:)的函数解析式是_________.15.如图,在正方形ABCD中,AB=8厘米,如果动点P在线段AB上以2厘米/秒的速度由A点向B点运动,同时动点Q在以1厘米/秒的速度线段BC上由C点向B点运动,当点P到达B点时整个运动过程停止.设运动时间为t秒,当AQ⊥DP时,t的值为_____秒.16.如图,点A,B分别在x轴、y轴上,点O关于AB的对称点C在第一象限,将△ABC沿x轴正方向平移k个单位得到△DEF(点B与E是对应点),点F落在双曲线y=kx上,连结BE交该双曲线于点G.∠BAO=60°,OA=2GE,则k的值为________17.已知关于的方程的一个根为,则实数的值为()A. B. C. D.18.如图,在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,则MN的长为___.三、解答题(共78分)19.(8分)某市提倡“诵读中华经典,营造书香校园”的良好诵读氛围,促进校园文化建设,进而培养学生的良好诵读习惯,使经典之风浸漫校园.某中学为了了解学生每周在校经典诵读时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:时间(小时)频数(人数)频率2≤t<340.13≤t<4100.254≤t<5a0.155≤t<68b6≤t<7120.3合计401(1)表中的a=,b=;(2)请将频数分布直方图补全;(3)若该校共有1200名学生,试估计全校每周在校参加经典诵读时间至少有4小时的学生约为多少名?20.(8分)已知函数y=(2m+1)x+m-3(1)若函数图象经过原点,求m的值.(2)若函数图象在y轴的交点的纵坐标为-2,求m的值.(3)若函数的图象平行直线y=-3x–3,求m的值.(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.21.(8分)如图,在平面直角坐标系中,O为坐标原点,直线l1:y=kx+4与y轴交于点A,与x轴交于点B.(1)请直接写出点A的坐标:______;(2)点P为线段AB上一点,且点P的横坐标为m,现将点P向左平移3个单位,再向下平移4个单位,得点P′在射线AB上.①求k的值;②若点M在y轴上,平面内有一点N,使四边形AMBN是菱形,请求出点N的坐标;③将直线l1绕着点A顺时针旋转45°至直线l2,求直线l2的解析式.22.(10分)解方程:(1)3x(x﹣1)=2﹣2x;(2)2x2﹣4x﹣1=1.23.(10分)如图,已知点是反比例函数的图象上一点过点作轴于点,连结,的面积为.(1)求和的值.(2)直线与的延长线交于点,与反比例函数图象交于点.①若,求点坐标;②若点到直线的距离等于,求的值.24.(10分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,求AC的长。25.(12分)将平行四边形纸片按如图方式折叠,使点与重合,点落到处,折痕为.(1)求证:;(2)连结,判断四边形是什么特殊四边形?证明你的结论.26.如图,已知等腰Rt△ABC中,AB=AC,∠BAC=,点A、B分别在x轴和y轴上,点C的坐标为(6,2).(1)如图1,求A点坐标;(2)如图2,延长CA至点D,使得AD=AC,连接BD,线段BD交x轴于点E,问:在x轴上是否存在点M,使得△BDM的面积等于△ABO的面积,若存在,求点M的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由不等式组至少有4个整数解,可得的取值范围,由方程的解是整数,可得的值,综合可得答案.【详解】解:因为由①得:,所以,由②得:<,即<,解得:>,又因为不等式组至少有4个整数解,所以,所以,又因为:,去分母得:,解得:,而方程的解为整数,所以,所以的值可以为:,综上的值可以为:,故选C.【点睛】本题考查不等式组的整数解的问题,方程的整数解问题,都是初中数学学习的难点,关键是理解题意,其中不等式组的整数解利用数轴得到范围是解题关键.2、D【解析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.【详解】通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是故选D.【点睛】本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.3、A【解析】
由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.【详解】∵△ACD∽△ADB,∴,∴AB==1,故选A.【点睛】考查相似三角形的性质,相似三角形对应边成比例.4、A【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.5、D【解析】
根据菱形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【详解】解:A、对角线互相垂直的平行四边形是菱形,所以A选项错误;
B、对角线相等的平行四边形是矩形,所以B选项错误;
C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;
D、对角线相等的菱形是正方形,正确,是真命题;所以D选项正确.
故选:D.【点睛】本题考查度的是命题的真假判断以及矩形、菱形的判定正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.熟练掌握矩形、菱形的判定定理是解答此题的关键.6、D【解析】
根据二次根式的意义,被开方数是非负数.【详解】解:根据题意,得解得,x≥-3.【点睛】此题主要考查自变量的取值范围,二次根式有意义的条件.7、B【解析】
如图,作AH⊥BC于H,则AH=1,利用含30度的直角三角形三边的关系得到AB=1AH=1,再根据折叠的性质得∠MAC=∠BAC,根据平行线的性质得∠MAC=∠ACB,所以∠BAC=∠ACB,从而得到BC=BA=1.【详解】解:如图,作AH⊥BC于H,则AH=1,在Rt△ABH中,∵∠ABC=30°,∴AB=1AH=1,∵矩形纸条沿AC折叠,∴∠MAC=∠BAC,∵AM//CN,∴∠MAC=∠ACB,∴∠BAC=∠ACB,∴BC=BA=1,故选B.【点睛】本题考查了折叠的性质、含30度角的直角三角形的性质、矩形的性质等,熟练掌握折叠前后图形的形状和大小不变以及其他相关的性质是解题的关键.8、C【解析】
画出中心对称图形即可判断【详解】解:观察图象可知,点P.点N满足条件.故选:C.【点睛】本题考查利用旋转设计图案,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.9、D【解析】
∵由已知和平移的性质,△ABC、△DCE都是是等边三角形,∴∠ACB=∠DCE=60°,AC=CD.∴∠ACD=180°-∠ACB-∠DCE=60°.∴△ACD是等边三角形.∴AD=AC=BC.故①正确;由①可得AD=BC,∵AB=CD,∴四边形ABCD是平行四边形.∴BD、AC互相平分,故②正确.由①可得AD=AC=CE=DE,故四边形ACED是菱形,即③正确.综上可得①②③正确,共3个.故选D.10、B【解析】
根据题意,它们的被开方数相同,列出方程求解.【详解】∵最简二次根式2与是同类二次根式,∴3a﹣1=a+3,解得a=2,故选:B.【点睛】此题考查同类二次根式的定义,最简二次根式的特点,正确理解题意列出方程是解题的关键.11、C【解析】
根据二次根式的被开方数非负得到关于x的不等式,解不等式即得答案.【详解】解:根据题意,得,解得,.故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式被开方数非负是解题的关键.12、A【解析】
解:∵四边形ABCD是正方形,∴∠ACB=45°,∴∠E+∠∠FAC=∠ACB=45°,∵CE=CA,∴∠E=∠FAC,∴∠FAC=∠ACB=22.5°.故选A.二、填空题(每题4分,共24分)13、3,5.4,6,6.5【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值【详解】点在上,时,秒;点在上,时,过点作交于点,点在上,时,④点在上,时,过点作交于点,为的中位线,【点睛】本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.14、【解析】
弹簧总长弹簧原来的长度挂上重物质量时弹簧伸长的长度,把相关数值代入即可.【详解】解:挂上的物体后,弹簧伸长,挂上的物体后,弹簧伸长,弹簧总长.故答案为:.【点睛】本题考查了由实际问题抽象一次函数关系式的知识,得到弹簧总长的等量关系是解决本题的关键.15、2【解析】
先证△ADP≌△BAQ,得到AP=BQ,然后用t表示出AP与BQ,列出方程解出t即可.【详解】因为AQ⊥PD,所以∠BAQ+∠APD=90°又因为正方形性质可到∠APD+∠ADP=90°,∠PAD=∠B=90°,AB=AD,所以得到∠BAQ=∠ADP又因为∠PAD=∠B=90°,AB=AD所以△ADP≌△BAQ,得到AP=BQAP=2t,QC=t,BC=8-t所以2t=8-2t,解得t=2s故填2【点睛】本题考查全等三角形的性质与判定,解题关键在于证出三角形全等,得到对应边相等列出方程.16、25【解析】
设OA等于2m,由对称图形的特点,和勾股定理等把C点和B点坐标用含m的代数式来表示,F、E、G是由△ABC平移K个单位得到,坐标可以用含m和k的代数式表示,因为G、F在双曲线上,所以其横纵坐标的乘积都为k,据此列两个关系式,先求出m的值,从而可求k的值.【详解】如图:作CH垂直于x轴,CK垂直于y轴,由对称图形的特点知,CA=OA,设OA=2m,∵∠BAO=60°,∴OB=23m,AC=2m,∠CAH=180°-60°-60°=60∴AH=m,CH=3m∴C点坐标为(3m,3m则F点坐标为(3m+k,3mF点在双曲线上,则(3m+k)×3m=kB点坐标为(0,23m则E点坐标为(k,23mG点坐标为(k-m,23m则(k-m)×23m=k,∴(3m+k)×3m=(k-m)×23m,整理得k=5m,代入(k-m)23m=k中,得4m×23m=5m,即m=0(舍去),m=53则k=5m=25故答案为:253【点睛】本题考查了平面直角坐标系中反比例函数与三角形的综合,灵活运用反比例函数的解析式与点的坐标间的关系是解题的关键.17、A【解析】
根据一元二次方程的根的定义,将根代入进行求解.【详解】∵x=−2是方程的根,由一元二次方程的根的定义,可得(−2)2+2k−6=0,解此方程得到k=1.故选:A.【点睛】考查一元二次方程根的定义,使方程左右两边相等的未知数的值就是方程的解,又叫做方程的根.18、1.【解析】
由图示知:MN=AM+BN﹣AB,所以结合已知条件,根据勾股定理求出AC的长即可解答.【详解】解:在Rt△ABC中,根据勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=1.故答案是:1.【点睛】本题考查勾股定理,解题的关键是结合图形得出:MN=AM+BN﹣AB.三、解答题(共78分)19、(1)6,0.2;(2)见解析;(3)学生约为780人.【解析】
(1)根据频数=频率×总数,用40乘以0.15可求得a的值,用8除以40求得b的值即可;(2)根据a的值补全直方图即可;(3)用1200乘以参加经典诵读时间至少有4小时的学生所占的频率之和即可得.【详解】(1)a=40×0.15=6,b==0.2,故答案为:6,0.2;(2)如图所示:(3)(0.15+0.2+0.3)×1200=780,答:估计全校每周在校参加经典诵读时间至少有4小时的学生约为780名.【点睛】本题考查了频数分布直方图,频数与频率,用样本估计总体等,弄清题意,读懂统计图表,从中找到必要的信息是解题的关键.20、(1)m=3;(2)m=1;(3)m=-2;(4)m<-.【解析】
(1)把原点坐标代入函数y=(2m+1)x+m-3可解出m;
(2)先确定直线y=(2m+1)x+m-3与y轴的交点坐标,再根据题意得到m-3=-2,然后解方程;
(3)根据两直线平行的问题得到2m+1=-3,然后解方程;
(4)根据一次函数的性质得到2m+1<0,然后解不等式.【详解】(1)把(0,0)代入y=(2m+1)x+m-3得m-3=0,
解得m=3;
(2)把x=0代入y=(2m+1)x+m-3得y=m-3,则直线y=(2m+1)x+m-3与y轴的交点坐标为(0,m-3),
所以m-3=-2,
解得m=1;
(3)由直线y=(2m+1)x+m-3平行直线y=-3x-3,
所以2m+1=-3,
解得m=-2;
(4)根据题意得2m+1<0,
解得m<.【点睛】本题难度中等.主要考查学生对一次函数各知识点的掌握.属于中考常见题型,应加强训练,同时,注意数形结合的应用.21、(1)(0,1);(2)①k=;②N(-3,);③直线
l2的解析式为y=x+1.【解析】
(1)令,求出相应的y值,即可得到A的坐标;(2)①先设出P的坐标,然后通过点的平移规律得出平移后的坐标,然后将代入中即可求出k的值;②作AB的中垂线与y轴交于M点,连结BM,分别作AM,BM的平行线,相交于点N,则四边形AMBN是菱形,设M(0,t),然后利用勾股定理求出t的值,从而求出OM的长度,然后利用BN=AM求出BN的长度,即可得到N的坐标;③先根据题意画出图形,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D,利用等腰三角形的性质和AAS证明△AOB≌△BDC,得出AO=BD,OB=DC,进一步求出点C的坐标,然后利用待定系数法即可求出直线l2的解析式.【详解】(1)∵y=kx+1与y轴交于点A,令,,∴A(0,1).(2)①由题意得:P(m,km+1),∵将点P向左平移3个单位,再向下平移1个单位,得点P′,∴P′(m-3,km),∵P′(m-3,km)在射线AB上,∴k(m-3)+1=km,解得:k=.②如图,作AB的中垂线与y轴交于M点,连结BM,过点B作AM的平行线,过点A作BM的平行线,两平行线相交于点N,则四边形AMBN是菱形.,,当时,,解得,∴.设M(0,t),则AM=BM=1-t,在Rt△BOM中,OB2+OM2=BM2,即32+t2=(1-t)2,解得:t=,∴M(0,),∴OM=,BN=AM=1-=,∴N(-3,).③如图,过点B作BC⊥l1,交l2于点C,过点C作CD⊥x轴于D.则∠ABC=∠BDC=90°,∵∠BAC=15°,∴△ABC是等腰直角三角形,∴AB=BC,∠ABO+∠CBD=90°,又∵∠ABO+∠BAO=90°,∴∠BAO=∠CBD,在和中,∴△AOB≌△BDC(AAS),∴AO=BD=1,OB=DC=3,∴OD=OB+BD=3+1=7,∴C(-7,3),设直线l2的解析式为:y=ax+1,则-7a+1=3,解得:a=.∴直线l2的解析式为:y=x+1.【点睛】本题主要考查全等三角形的判定及性质,菱形的性质,勾股定理,一次函数与几何综合,解题的关键在于合理的添加辅助线,构造出全等三角形.22、(1)x1=1,x2=﹣;(2)x1=1+,x2=1﹣【解析】
(1)方程整理后,利用因式分解法求出解即可;(2)方程整理后,利用配方法求出解即可.【详解】解:(1)3x(x﹣1)=2﹣2x,整理得:3x(x﹣1)+2(x﹣1)=1,分解因式得:(x﹣1)(3x+2)=1,可得x﹣1=1或3x+2=1,解得:x1=1,x2=-;(2)2x2﹣4x﹣1=1,方程整理得:x2﹣2x=,平方得:x2﹣2x+1=+1,即(x﹣1)2=,开方得:x﹣1=±,解得:x1=1+,x2=1-.【点睛】本题考查解一元二次方程,根据方程的特点选择合适的求解方法是解题的关键.23、(1),;(2)①;②.【解析】
(1)根据题意将点的坐标代入反比例函数进行运算即可.(2)①将,将代入即可得出点C的坐标②将代入求得点,得出E的横坐标,再代入反比例函数中计算即可【详解】解:(1)根据题意可知:的面积=k,又反比例函数的图象位于第一象限,k>0,则k=8将k=8和代入反比例函数即可得m=4(2)①若,将代入,可得点.②将代入,可得点,则.点的横坐标为:.点E在直线上,点E的纵坐标为:,点的反比例函数上,.解得:,(舍去).【点睛】本题考查反比例函数,熟练掌握计算法则是解题关键.24、【解析】
先根据内角和定理求出∠CAB的度数,再根据角平分线性质求出∠CAD的度数,根据含30度角的直角三角形性质求出AD,再根据勾股定理即可得AC长.【详解】解:在△ABC中,∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠DAC=30°,∵CD=1,∴AD=2,∴AC=.【点睛】本题考查了对含30度角的直角三角形的性质、角平分线性质和勾股定理的应用,求出AD的长是解此题的关键.25、(1)证明见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 棒球击球笼网市场发展现状调查及供需格局分析预测报告
- 蔬菜盘市场发展预测和趋势分析
- 2024年度农业种植技术转让合同:高效节能种植技术
- 2024年度环保设施建造及运营管理合同
- 2024年度物流服务合同:某物流公司为其提供物流服务的合同
- 2024年度地坪施工人员培训合同
- 2024年度深海探测设备安装施工合同
- 2024年度版权购买合同:摄影作品著作权购买及使用权
- 2024年度技术开发合同:智能手机操作系统定制
- 2024年度演艺经纪合同(艺人推广与代理)
- 重大事故隐患排查备案表
- 2023年新改版教科版六年级下册科学全册课件
- 用户运营专员工作职责与任职要求(7篇)
- 机织学课后习题答案
- 固定资产贷款和项目融资的分析框架和审查要点课件
- 水痘带状疱疹病毒课件
- 思想道德与法治第二章
- 成本会计-材料成本的核算课件
- 北林园林树木学各论课件
- 英语动词的分类课件
- 手术患者输血反应的应急预案流程图
评论
0/150
提交评论