版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知四边形ABCD是任意四边形,若在下列条件中任取两个,使四边形ABCD是平行四边形,①AB∥CD;②BC∥AD,③AB=CD;④BC=AD,则符合条件的选择有()A.2组 B.3组 C.4组 D.6组2.甲、乙两人各射击6次,甲所中的环数是8,5,5,a,b,c,且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是()A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C.甲,乙射击成绩稳定性相同 D.甲、乙射击成绩稳定性无法比较3.如图,长宽高分别为3,2,1的长方体木块上有一只小虫从顶点A出发沿着长方体的外表面亮到现点B,则它爬行的最短路程是()A. B.2 C.3 D.54.如图所示的3×3正方形网格中,∠1+∠2+∠3+∠4+∠5等于()A.135° B.180° C.225° D.270°5.如图,的顶点坐标分别为,,,如果将先向左平移个单位,再向上平移个单位得到,那么点的对应点的坐标是()A. B. C. D.6.如图,在四边形ABCD中,已知AB=CD,M、N、P分别是AD、BC、BD的中点∠ABD=20°,∠BDC=70°,则∠NMP的度数为()A.50° B.25° C.15° D.207.下列图形中,是轴对称图形,不是中心对称图形的是()A. B.C. D.8.下列多项式中,不能运用公式进行分解因式的是()A.a2+b2 B.x2﹣9 C.m2﹣n2 D.x2+2xy+y29.一个平行四边形的两条对角线的长分别为8和10,则这个平行四边形边长不可能是()A.2B.5C.8D.1010.如图,在等边△ABC中,点P从A点出发,沿着A→B→C的路线运动,△ACP的面积为S,运动时间为t,则S与t的图像是()A. B.C. D.二、填空题(每小题3分,共24分)11.如图,中,,若动点从开始,按C→A→B→C的路径运动(回到点C就停止),且速度为每秒,则P运动________秒时,为等腰三角形.(提示:直角三角形中,当斜边和一条直角边长分别为和时,另一条直角边为)12.如图,四边形中,,,为上一点,分别以,为折痕将两个角(,)向内折起,点,恰好都落在边的点处.若,,则________.13.如图,平行四边形ABCO的顶点O,A,C的坐标分别是(0,0),(a,0),(b,c),则顶点坐标B的坐标为_________.14.如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,B,C分别落在点A',B',C'处,且点A',C',B在同一条直线上,则AB的长为__________.15.在五边形中,若,则______.16.若分式的值是0,则x的值为________.17.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=_____,对角线AC的长为_____.18.若反比例函数图象经过点A(﹣6,﹣3),则该反比例函数表达式是________.三、解答题(共66分)19.(10分)(1)如图1,要从电线杆离地面5m处向地面拉一条钢索,若地面钢索固定点A到电线杆底部B的距离为2m,求钢索的长度.(2)如图2,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,若EF=2,求菱形的周长.20.(6分)为了选拔一名学生参加全市诗词大赛,学校组织了四次测试,其中甲乙两位同学成绩较为优秀,他们在四次测试中的成绩(单位:分)如表所示.甲90859590乙98828892(1)分别求出两位同学在四次测试中的平均分;(2)分别求出两位同学测试成绩的方差.你认为选谁参加比赛更合适,请说明理由.21.(6分)解下列方程:(1);(2).22.(8分)如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。(2)若AC=2,求AD的长。23.(8分)正比例函数和一次函数的图象都经过点,且一次函数的图象交轴于点.(1)求正比例函数和一次函数的表达式;(2)在如图所示的平面直角坐标系中分别画出这两个函数的图象;(3)求出的面积.24.(8分)甲、乙两人相约登山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)图中的t1=分;(2)若乙提速后,乙登山的速度是甲登山的速度的3倍,①则甲登山的速度是米/分,图中的t2=分;②请求出乙登山过程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式.25.(10分)如图所示,在△ABC中,CD⊥AB于D,AC=4,BC=3,CD=(1)求AD的长;(2)求证:△ABC是直角三角形.26.(10分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
由平行四边形的判定方法即可解决问题.【详解】∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形;∵BC∥AD,BC=AD,∴四边形ABCD是平行四边形;∵BC=AD,AB=CD,∴四边形ABCD是平行四边形;即使得ABCD是平行四边形,一共有4种不同的组合;故选:C.【点睛】本题考查了平行四边形的判定方法;熟练掌握平行四边形的判定方法是解决问题的关键.2、B【解析】
要判断甲,乙射击成绩的稳定性就是要比较两人成绩的方差的大小,关键是求甲的方差.甲的这组数中的众数是8就说明a,b,c中至少有两个是8,而平均数是6,则可以得到a,b,c三个数其中一个是2,另两个数是8,求得则甲的方差,再进行比较得出结果.【详解】∵这组数中的众数是8,∴a,b,c中至少有两个是8,∵平均数是6,∴a,b,c三个数其中一个是2,∴s甲2=1∵5>4,∴乙射击成绩比甲稳定.故选:B.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3、C【解析】
将长方形的盒子按不同方式展开,得到不同的矩形,求出不同矩形的对角线,最短者即为正确答案.【详解】解:将长方形的盒子按不同方式展开,得到不同的矩形,对角线长分别为:∴从点A出发沿着长方体的表面爬行到达点B的最短路程是3.故选C.【点睛】本题主要考查了两点之间线段最短,解答时根据实际情况进行分类讨论,灵活运用勾股定理是解题的关键.4、C【解析】
首先判定△ABC≌△AEF,△ABD≌△AEH,可得∠5=∠BCA,∠4=∠BDA,然后可得∠1+∠5=∠1+∠BCA=90°,∠2+∠4=90°,然后即可求出答案.【详解】在△ABC和△AEF中,∴△ABC≌△AEF(SAS)∴∠5=∠BCA∴∠1+∠5=∠1+∠BCA=90°在△ABD和△AEF中∴△ABD≌△AEH(SAS)∴∠4=∠BDA∴∠2+∠4=∠2+∠BDA=90°∵∠3=45°∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°故答案选C.【点睛】本题考查的是全等三角形的判定与性质,能够根据全等将所求角转化是解题的关键.5、C【解析】
把B点的横坐标减2,纵坐标加1即为点B´的坐标.【详解】解:由题中平移规律可知:点B´的横坐标为-1−2=−3;纵坐标为1+1=2,
∴点B´的坐标是(−3,2).
故选:C.【点睛】本题考查了坐标与图形变化−平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.6、B【解析】
根据中位线定理和已知,易证明△PMN是等腰三角形,根据等腰三角形的性质和已知条件即可求出∠PMN的度数.【详解】在四边形ABCD中,∵M、N、P分别是AD、BC、BD的中点,∴PN,PM分别是△CDB与△DAB的中位线,∴PM=12AB,PN=12DC,PM∥AB,∵AB=CD,∴PM=PN,∴△PMN是等腰三角形,∴∠PMN=∠PNM.∵PM∥AB,PN∥DC,∴∠MPD=∠ABD=20°,∠BPN=∠BDC=70°,∴∠MPN=∠MPD+∠NPD=20°+(180﹣70)°=130°,∴∠PMN=180°-130°2故选B.【点睛】本题考查了三角形中位线定理及等腰三角形的判定和性质,解题时要善于根据已知信息,确定应用的知识.7、B【解析】
根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】A选项是轴对称图形,也是中心对称图形,故本选项不符合题意;B选项是轴对称图形,不是中心对称图形,故本选项符合题意;C选项是轴对称图形,也是中心对称图形,故本选项不符合题意;D选项是轴对称图形,也是中心对称图形,故本选项不符合题意.故选B.【点睛】此题考查的是轴对称图形和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.8、A【解析】A.不能进行因式分解,故不正确;B.可用平方差公式分解,即x2-9=(x+3)(x-3),故正确;C.可用平方差公式分解,即m2-n2=(m+n)(m-n),故正确;D.可完全平方公式分解,即=(x+y)2,故正确;故选A.9、D【解析】试题分析:根据平行四边形的对角线互相平分和三角形三边关系可求得平行四边形边长的取值范围,可求得答案.解:如图,在平行四边形ABCD中,对角线AC=8,BD=1,且交于点O,则AO=AC=4,BO=DO=BD=5,∴5﹣4<AB<5+4,5﹣4<AD<5+4,即1<AB<9,1<AD<9,故平行四边形的边长不可能为1.故选D.【点评】本题主要考查平行四边形的性质和三角形三边关系,由三角形三边关系求得平行四边形边长的取值范围是解题的关键.10、C【解析】当点A开始沿AB边运动到点B时,△ACP的面积为S逐渐变大;当点A沿BC边运动到点C时,△ACP的面积为S逐渐变小.,∴由到与由到用的时间一样.故选C.二、填空题(每小题3分,共24分)11、3,5.4,6,6.5【解析】
作CD⊥AB于D,根据勾股定理可求CD,BD的长度,分BP=BC,CP=BP,BC=CP三种情况讨论,可得t的值【详解】点在上,时,秒;点在上,时,过点作交于点,点在上,时,④点在上,时,过点作交于点,为的中位线,【点睛】本题考查了勾股定理,等腰三角形的性质,关键是利用分类思想解决问题.12、【解析】
先根据折叠的性质得EA=EF,BE=EF,DF=AD=3,CF=CB=5,则AB=2EF,DC=8,再作DH⊥BC于H,由于AD∥BC,∠B=90°,则可判断四边形ABHD为矩形,所以DH=AB=2EF,HC=BC-BH=BC-AD=2,然后在Rt△DHC中,利用勾股定理计算出DH=,所以EF=.【详解】解:∵分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处,
∴EA=EF,BE=EF,DF=AD=3,CF=CB=5,
∴AB=2EF,DC=DF+CF=8,
作DH⊥BC于H,
∵AD∥BC,∠B=90°,
∴四边形ABHD为矩形,
∴DH=AB=2EF,HC=BC-BH=BC-AD=5-3=2,
在Rt△DHC中,DH=,∴EF=DH=.故答案为:.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.13、(a+b,c)【解析】
平行四边形的对边相等,B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,从而确定B点的坐标.【详解】∵四边形ABCO是平行四边形,∴AO=BC,AO∥BC,∴B点的横坐标减去C点的横坐标,等于A点的横坐标减去O点的横坐标,B点和C点的纵坐标相等,∵O,A,C的坐标分别是(0,0),(a,0),(b,c),∴B点的坐标为(a+b,c).故答案是:(a+b,c).【点睛】本题考查平行四边形的性质,平行四边形的对边相等,以及考查坐标与图形的性质等知识点.14、【解析】
由C′D∥BC,可得比例式,设AB=a,构造方程即可.【详解】设AB=a,根据旋转的性质可知C′D=a,A′C=2+a,∵C′D∥BC,∴,即,解得a=−1−(舍去)或−1+.所以AB长为.故答案为.【点睛】本题主要考查了旋转的性质、相似三角形的判定和性质,解题的关键是找到图形中相似基本模型“A”型.15、100【解析】
根据五边形内角和即可求解.【详解】∵五边形的内角和为(5-2)×180°=540°,∴∠E=540°-()=540°-440°=100°,故填100.【点睛】此题主要考查多边形的内角和,解题的关键是熟知多边形的内角和公式.16、3【解析】
根据分式为0的条件解答即可,【详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为:3【点睛】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.17、120°10【解析】∵四边形ABCD是菱形,∴AB=BC=CD=DA,AD∥BC,∵E是AB的中点,且DE⊥AB,∴AE=AD,∴sin∠ADE=,∴∠ADE=30°,∴∠DAE=60°,∵AD∥BC,∴∠ABC=180°−60°=120°;连接BD,交AC于点O,在菱形ABCD中,∠DAE=60°,∴∠CAE=30°,AB=10,∴OB=5,根据勾股定理可得:AO==,即AC=.故答案为:120°;.点睛:本题考查了菱形的性质、线段垂直平分线的性质、勾股定理等知识点,熟练掌握菱形的性质是解题的关键.由在菱形ABCD中,E是AB的中点,且DE⊥AB,可证得AE=AD,即可求得∠ADE=30°,继而求得答案;连接BD,交AC于点O,易得AC⊥BD,由勾股定理,即可求得答案.18、y=18/x【解析】
函数经过一定点,将此点坐标代入函数解析式y=(k≠0)即可求得k的值.【详解】设反比例函数的解析式为y=(k≠0),函数经过点A(-6,-3),∴-3=,得k=18,∴反比例函数解析式为y=.故答案为:y=.【点睛】此题比较简单,考查的是用待定系数法求反比例函数的解析式.三、解答题(共66分)19、(1)钢索的长度为m;(2)菱形ABCD的周长=16.【解析】
(1)直接利用勾股定理得出AC的长即可;(2)由三角形的中位线,求出BD=4,根据∠A=60°,得△ABD为等边三角形,从而求出菱形ABCD的边长.【详解】(1)如图1所示,由题意可得:AB=2m,BC=5m,则AC==(m),答:钢索的长度为m;(2)∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=2,∴BD=4,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=4,∴菱形ABCD的周长=4×4=16,【点睛】此题考查勾股定理的应用;三角形中位线定理;菱形的性质,解题关键在于求出AC的长20、(1)(分,(分;(2)选择甲参加比赛更合适.【解析】
(1)由平均数的公式计算即可;
(2)先分别求出两位同学测试成绩的方差,再根据方差的意义求解即可.【详解】解:(1)(分,(分,(2),,甲的方差小于乙的方差,选择甲参加比赛更合适.【点睛】本题考查了方差与平均数.平均数是指在一组数据中所有数据之和再除以数据的个数.方差的意义:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21、(1),;(2),【解析】
(1)用因式分解法解一元二次方程;(2)用公式法解一元二次方程.【详解】解:(1)或∴,;(2)∵,,,>0∴方程有两个不相等的实数根∴即,.【点睛】本题考查解一元二次方程,掌握因式分解的技巧和一元二次求根公式正确计算是本题的解题关键.22、(1)∠BAC=75°(2)AD=.【解析】试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.(1)∠BAC=180°-60°-45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,考点:本题主要考查勾股定理、三角形内角和定理点评:解答本题的关键是根据三角形内角和定理推出AD=DC.23、(1);;(2)图详见解析;(3)3【解析】
(1)把代入即可求得的值,求得正比例函数的解析式;把,代入,利用待定系数法,即可求得一次函数的解析式;(2)根据题意描出相应的点,再连线即可;(3)由A、B、O三点坐标,根据三角形的面积公式即可求解.【详解】解:(1)把A(1,2)代入中,得,∴正比例函数的表达式为;把A(1,2),B(3,0)代入中,得,解得:,所以一次函数的表达式为;(2)如图所示.(3)由题意可得:.【点睛】本题考查了待定系数法求函数解析式,以及直线与坐标轴围成的三角形的面积的计算,理解线段的长度可以通过点的坐标表示,培养数形结合思想是关键.24、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度首付分期购房借款合同范本规定6篇
- 年度线性低密度聚乙烯产业分析报告
- 年度吸污车产业分析报告
- 2025年度楼房建筑工程合同纠纷解决协议4篇
- 二零二四年养老社区三方物业服务委托合同文本3篇
- 二零二五年度船舶租赁船运输协议合同3篇
- 二零二五年酒店客房家具更新换代合同3篇
- 2025年度智能交通信号系统安装与维护承包协议合同范本3篇
- 二零二五版教育培训机构合同标的课程开发与教学质量承诺3篇
- 2025年度生物质能发电项目合作协议合同范本
- GB/T 33688-2017选煤磁选设备工艺效果评定方法
- GB/T 304.3-2002关节轴承配合
- 漆画漆艺 第三章
- CB/T 615-1995船底吸入格栅
- 光伏逆变器一课件
- 货物供应、运输、包装说明方案
- (完整版)英语高频词汇800词
- 《基础马来语》课程标准(高职)
- IEC61850研讨交流之四-服务影射
- 《儿科学》新生儿窒息课件
- 材料力学压杆稳定
评论
0/150
提交评论