下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲:圆锥曲线的双切线处理技巧1.知识要点.这道试题主要的点在算理,即计算中如何合理的处理双切线,我总结如下:已知曲线外一点,向二次曲线引两条切线,设.第1步:分别写出切线的方程(注意斜率);第2步:联立与曲线的方程,利用相切条件,得到代数关系①,②式从而以的或坐标为参数,进一步构造点横或纵坐标满足的同构方程方程③;第3步:利用方程③根与系数的关系判断与曲线的位置关系,或完成其他问题.1.抛物线C的顶点为坐标原点O.焦点在x轴上,直线l:交C于P,Q两点,且.已知点,且与l相切.(1)求C,的方程;(2)设是C上的三个点,直线,均与相切.判断直线与的位置关系,并说明理由.【详解】(1)依题意设抛物线,,所以抛物线的方程为,与相切,所以半径为,所以的方程为;(2)设若斜率不存在,则方程为或,若方程为,根据对称性不妨设,则过与圆相切的另一条直线方程为,此时该直线与抛物线只有一个交点,即不存在,不合题意;若方程为,根据对称性不妨设则过与圆相切的直线为,又,,此时直线关于轴对称,所以直线与圆相切;若直线斜率均存在,则,所以直线方程为,整理得,同理直线的方程为,直线的方程为,与圆相切,整理得,与圆相切,同理所以为方程的两根,,到直线的距离为:,所以直线与圆相切;综上若直线与圆相切,则直线与圆相切.3.练习.(2020成都三诊).已知椭圆:的左焦点,点在椭圆上.(1)求椭圆的标准方程;(2)经过圆:上一动点作椭圆的两条切线,切点分别记为,,直线,分别与圆相交于异于点的,两点.(i)求证:;(ii)求的面积的取值范围.(Ⅰ)∵椭圆的左焦点,∴.将代入,得.又,∴,.∴椭圆的标准方程为.(Ⅱ)(i)设点.①当直线,的斜率都存在时,设过点与椭圆相切的直线方程为.由,消去,得..令,整理得.设直线,的斜率分别为,.∴.又,∴.∴,即为圆的直径,∴.②当直线或的斜率不存在时,不妨设,则直线的方程为.∴,,也满足.综上,有.(ii)设点,.当直线的斜率存在时,设直线的方程为.由,消去,得..令,整理得.则∴直线的方程为.化简可得,即.经验证,当直线的斜率不存在时,直线的方程为或,也满足.同理,可得直线的方程为.∵在直线,上,∴,.∴直线的方程为.由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 英汉交互口译课程设计
- 体育行业助理的日常工作内容和能力要求
- 内科护士工作心得
- 情境教学法在班级中的应用计划
- 建筑行业客服工作思考
- 酒店管理技术要点概述
- 旅游景区卫生净化
- 2024年甜甜的秘密教案
- 2024年认识数学的教案
- 2024年认识空气教案
- 房屋无偿使用协议书(8篇)
- 中央银行理论与实务期末复习题
- 国家开放大学电大本科《国际私法》案例题题库及答案(b试卷号:1020)
- 喜庆中国节春节习俗文化PPT模板
- 测井仪器设计规范--电子设计
- 北师大版小学五年级上册数学第六单元《组合图形的面积》单元测评培优试卷
- 用特征方程求数列的通项
- 四年级奥数题(一)找规律
- 素材库管理系统架构(共13页)
- 监理平行检验记录表
- 县领导在新录用公务员培训班开班典礼上的讲话
评论
0/150
提交评论