2023年山东省枣庄市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
2023年山东省枣庄市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
2023年山东省枣庄市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
2023年山东省枣庄市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
2023年山东省枣庄市名校数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列各组多项式中,没有公因式的是()A.ax﹣bx和by﹣ay B.3x﹣9xy和6y2﹣2yC.x2﹣y2和x﹣y D.a+b和a2﹣2ab+b22.巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是()A.45.2分钟 B.48分钟 C.46分钟 D.33分钟3.下列调查方式中适合的是()A.要了解一批节能灯的使用寿命,采用普查方式B.调查你所在班级同学的身高,采用抽样调查方式C.环保部门调查长江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用普查方式4.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>25.在,,,,,中分式的个数有()A.2个 B.3个 C.4个 D.5个6.一次函数的图象如图所示,点在函数的图象上则关于x的不等式的解集是A. B. C. D.7.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6 B.8 C.10 D.128.对于反比例函数,当时,y的取值范围是()A. B.C. D.9.在正方形中,是边上一点,若,且点与点不重合,则的长可以是()A.3 B.4 C.5 D.610.已知反比例函数y=的图上象有三个点(2,y1),(3,y2),(﹣1,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y111.从-3、-2、-1、1、2、3六个数中任选一个数记为k,若数k使得关于x的分式方程k-1x+1=k-2有解,且使关于x的一次函数y=k+2x+1不经过第四象限A.4 B.3 C.2 D.112.函数与在同一坐标系内的图像可能是()A. B.C. D.二、填空题(每题4分,共24分)13.已知b是a,c的比例中项,若a=4,c=16,则b=________.14.因式分解:______.15.如图中的数字都是按一定规律排列的,其中x的值是________.16.如图的直角三角形中未知边的长x=_______.17.如图,在矩形中,点在对角线上,过点作,分别交,于点,,连结,.若,,图中阴影部分的面积为,则矩形的周长为_______.18.数据2,0,1,9的平均数是__________.三、解答题(共78分)19.(8分)如图,已知是的中线,且求证:若,试求和的长20.(8分)如图,将正方形ABCD折叠,使点C与点D重合于正方形内点P处,折痕分别为AF、BE,如果正方形ABCD的边长是2,那么△EPF的面积是_____.21.(8分)如图1,平面直角坐标系中,直线AB:y=﹣x+b交x轴于点A(8,0),交y轴正半轴于点B.(1)求点B的坐标;(2)如图2,直线AC交y轴负半轴于点C,AB=BC,P为线段AB上一点,过点P作y轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求d与t之间的函数关系式;(3)在(2)的条件下,M为CA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使△QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.22.(10分)在平面直角坐标系中,一次函数的图象交轴、轴分别于两点,交直线于。(1)求点的坐标;(2)若,求的值;(3)在(2)的条件下,是线段上一点,轴于,交于,若,求点的坐标。23.(10分)如图,在菱形ABCD中,AB=4,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)当AM的值为时,四边形AMDN是矩形,请你把猜想出的AM值作为已知条件,说明四边形AMDN是矩形的理由.24.(10分)甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:(1)A,B两城相距多少千米?(2)分别求甲、乙两车离开A城的距离y与x的关系式.(3)求乙车出发后几小时追上甲车?(4)求甲车出发几小时的时候,甲、乙两车相距50千米?25.(12分)一次期中考试中,甲、乙、丙、丁、戍五位同学的数学、英语成绩等有关信息如下表所示:(单位:分)甲乙丙丁戍平均分标准差数学7172696870英语888294857685(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择.标准分的计算公式是:标准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问甲同学在本次考试中,数学与英语哪个学科考得更好?26.为了参加“荆州市中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,1.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85bc22.8八(2)a858519.2(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】

直接利用公因式的确定方法:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案.【详解】A、ax﹣bx=x(a﹣b)和by﹣ay=﹣y(a﹣b),故两多项式的公因式为:a﹣b,故此选项不合题意;B、3x﹣9xy=3x(1﹣3y)和6y2﹣2y=﹣2y(1﹣3y),故两多项式的公因式为:1﹣3y,故此选项不合题意;C、x2﹣y2=(x﹣y)(x+y)和x﹣y,故两多项式的公因式为:x﹣y,故此选项不合题意;D、a+b和a2﹣2ab+b2=(a﹣b)2,故两多项式没有公因式,故此选项符合题意;故选:D.【点睛】此题主要考查了公因式,正确把握确定公因式的方法是解题关键.2、A【解析】试题分析:由图象可知校车在上坡时的速度为200米每分钟,长度为3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000÷(46﹣18﹣8×2)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟.考点:一次函数的应用.3、C【解析】

利用抽样调查,全面普查适用范围直接判断即可【详解】A.要了解一批节能灯的使用寿命,应采用抽样调查方式,故A错B.调查你所在班级同学的身高,应采用全面普查方式,故B错C.环保部门调查沱江某段水域的水质情况,应采用抽样调查方式,故C对D.调查全市中学生每天的就寝时间,应采用抽样调查方式,故D错【点睛】本题主要全面普查和抽样调查应用范围,基础知识牢固是解题关键4、D【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】∵代数式有意义,∴,解得:x>1.故选:D.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.5、B【解析】

根据分式的定义进行判断;【详解】,,,,中分式有:,,共计3个.故选:B.【点睛】考查了分式的定义,解题关键抓住分式中分母含有字母.6、A【解析】

观察函数图象结合点P的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当时,.故选:A.【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式的解集是解题的关键.7、C【解析】

因为BC为AF边上的高,要求△AFC的面积,求得AF即可,先求证△AFD′≌△CFB,得BF=D′F,设D′F=BF=x,则在Rt△AFD′中,根据勾股定理列方程求出x即可得到结果.【详解】解:由四边形ABCD为矩形以及折叠可得,AD′=AD=BC,∠D=∠D′=∠B,又∠AFD′=∠CFB,∴△AFD′≌△CFB(AAS),∴D′F=BF,设D′F=BF=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解得:x=3,∴AF=8-x=8﹣3=5,∴S△AFC=•AF•BC=1.故选:C.【点睛】本题考查了折叠的性质,矩形的性质,勾股定理以及全等三角形的判定与性质等知识,本题中设D′F=x,在直角三角形AFD′中运用勾股定理求x是解题的关键.8、A【解析】

根据反比例函数的k=-6<0,则其图象在第二象限上,y随x的增大而增大,则x=-1时y取得最小值,从而可以得到结果.【详解】∵k=-6<0,∴的图象在第二象限上,y随x的增大而增大,∴时,∴.故选A.【点睛】此题重点考查学生对于反比例函数图像和性质的掌握,把握其中的规律是解题的关键.9、B【解析】

且根据E为BC边上一点(E与点B不重合),可得当E与点C重合时AE最长,求出AC即可得出答案.【详解】解:∵四边形ABCD为正方形,∴AB=BC=3,AC=,又∵E为BC边上一点,E与点B不重合,∴当E与点C重合时AE最长,则3<AE≤,故选:B.【点睛】本题考查全正方形的性质和勾股定理,求出当E与点C重合时AE最长是解题的关键.10、A【解析】

先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y2<y1,y3<0,∴y3<y2<y1.故选:A.【点睛】本题考查了反比例函数图象的性质,对于反比例函数y=(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内,本题先判断出比例系数k2+1是正数是解题的关键.11、C【解析】

根据题意可以求得k的值,从而可以解答本题.【详解】解:∵关于x的一次函数y=(k+2)x+1不经过第四象限,∴k+2>0,解得:k>-2,∵关于x的分式方程:k-1∴当k=-1时,分式方程k-1x+1=k-2当k=1时,分式方程k-1x当k=2时,分式方程k-1x当k=3时,分式方程k-1x+1=k-2∴符合要求的k的值为-1和3,∴所有满足条件的k的个数是2个,故选:C.【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出相应的k的值.12、B【解析】

分k>0与k<0两种情况分别进行讨论即可得.【详解】当k>0时,y=kx-1的图象过一、三、四象限,的图象位于第一、三象限,观察可知选项B符合题意;当k<0时,y=kx-1的图象过二、三、四象限,的图象位于第二、四象限,观察可知没有选项符合题意,故选B.【点睛】本题考查了反比例函数图象与一次函数图象的结合,熟练掌握反比例函数的图象与性质以及一次函数的图象与性质是解题的关键.二、填空题(每题4分,共24分)13、±8【解析】

根据比例中项的定义即可求解.【详解】∵b是a,c的比例中项,若a=4,c=16,∴b2=ac=4×16=64,∴b=±8,故答案为±8【点睛】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.14、【解析】

首先把公因式3提出来,然后按照完全平方公式因式分解即可.【详解】解:==故答案为:.【点睛】此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.15、1【解析】

根据已知图形得出m+1=n且m+n=19,求得m、n的值,再根据x=19n-m可得答案.【详解】解:由题意知,m+1=n且m+n=19,∴m=9,n=10,∴x=19×10-9=1,故答案为:1.【点睛】本题主要考查图形及数的变化规律,解题的关键是通过观察图形分析总结出规律,再按规律求解.16、【解析】

根据勾股定理求解即可.【详解】x=.故答案为:.【点睛】本题考查了勾股定理,在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a2+b2=c2.也就是说,直角三角形两条直角边的平方和等于斜边的平方.17、【解析】

作PM⊥AD于M,交BC于N,进而得到四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,继而可证明S△PEB=S△PFD,然后根据勾股定理及完全平方公式可求,,进而求出矩形的周长.【详解】解:作PM⊥AD于M,交BC于N,

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE,且S△DFP+S△PBE=9,∴,且,∴,即,.∵,,∴,,∴,∴矩形ABCD的周长=2=.故答案为:.【点睛】本题考查了矩形的性质,勾股定理,完全平方公式,三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.18、1【解析】

根据算术平均数的定义计算可得.【详解】数据2,0,1,9的平均数是=1,

故答案是:1.【点睛】考查算术平均数,解题的关键是掌握算术平均数的定义.三、解答题(共78分)19、(1)见解析;(2)【解析】

(1)通过利用等角的补角相等得到,又已知,即可得证(2)AD为中线,得到DC=4,又易证,利用比例式求出AC,再由(1)得到,列出比例式可得到AD【详解】证明:解:是的中线由得【点睛】本题主要考查相似三角形的判定与性质,第二问的关键在于找到相似三角形,利用对应边成比例求出线段20、【解析】

过P作PH⊥DC于H,交AB于G,由正方形的性质得到AD=AB=BC=DC=2;∠D=∠C=90°;再根据折叠的性质有PA=PB=2,∠FPA=∠EPB=90°,可判断△PAB为等边三角形,利用等边三角形的性质得到∠APB=60°,,于是∠EPF=10°,PH=HG﹣PG=2﹣,得∠HEP=30°,然后根据含30°的直角三角形三边可求出HE,得到EF,最后利用三角形的面积公式计算即可.【详解】解:过P作PH⊥DC于H,交AB于G,如图,则PG⊥AB,∵四边形ABCD为正方形,∴AD=AB=BC=DC=2;∠D=∠C=90°,又∵将正方形ABCD折叠,使点C与点D重合于形内点P处,∴PA=PB=2,∠FPA=∠EPB=90°,∴△PAB为等边三角形,∴∠APB=60°,PG=AB=,∴∠EPF=10°,PH=HG﹣PG=2﹣,∴∠HEP=30°,∴HE=PH=(2﹣)=2﹣3,∴EF=2HE=4﹣6,∴△EPF的面积=FE•PH=(2﹣)(4﹣6)=7﹣1.故答案为7﹣1.【点睛】本题考查了折叠的性质:折叠前后的两图形全等,即对应角相等,对应线段相等.也考查了正方形和等边三角形的性质以及含30°的直角三角形三边的关系.21、(1)B(0,6);(2)d=﹣t+10;(3)见解析.【解析】【分析】(1)把A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t,t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.【详解】解:(1)∵y=﹣x+b交x轴于点A(8,0),∴0=﹣×8+b,b=6,∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);(2)∵A(8,0),B(0,6),∴OA=8,OB=6,∵∠AOB=90°,∴AB=10=BC,∴OC=4,∴点C(0,﹣4),设直线AC解析式为y=kx+b’,∴,∴,∴直线AC解析式为y=x﹣4,∵P在直线y=﹣x+6上,∴可设点P(t,﹣t+6),∵PQ∥y轴,且点Q在y=x﹣4上,∴Q(t,t﹣4),∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;(3)过点M作MG⊥PQ于G,∴∠QGM=90°=∠COA,∵PQ∥y轴,∴∠OCA=∠GQM,∵CQ=AM,∴AC=QM,在△OAC与△GMQ中,,∴△OAC≌△GMQ,∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,∴∠MGH=∠RHG=∠MRH=90°,∴四边形GHRM是矩形,∴HR=GM=8,可设GH=RM=k,∵△MNQ是等腰直角三角形,∴∠QMN=90°,NQ=NM,∴∠HNQ+∠HQN=90°,∴∠HNQ+∠RNM=90°,∴∠RNM=∠HQN,∴△HNQ≌△RMN,∴HN=RM=k,NR=QH=4+k,∵HR=HN+NR,∴k+4+k=8,∴k=2,∴GH=NH=RM=2,∴HQ=6,∵Q(t,t﹣4),∴N(t+2,t﹣4+6)即N(t+2,t+2)∵N在直线AB:y=﹣x+6上,∴t+2=﹣(t+2)+6,∴t=2,∴P(2,),N(4,3),∴PH=,NH=2,∴PN==.【点睛】本题考核知识点:一次函数综合应用.解题关键点:熟记一次函数性质,运用数形结合思想.22、(1),;(2);(3)点的坐标为.【解析】

(1)分别代入x=0、y=0求出y、x的值,由此可得出点B.A的坐标;(2)设点P的坐标为(x,y),利用一次函数图象上点的坐标特征结合等腰三角形的性质可得出点P的坐标,再由点P在直线y=kx上利用一次函数图象上点的坐标特征可求出k值;(3)设点C的坐标为(x,−x+2),则点D的坐标为(x,x),点E的坐标为(x,0),进而可得出CD、DE的长度,由CD=2DE可得出关于x的一元一次方程,解之即可得出结论【详解】解:(1)当时,,当时,,,;(2)设,因为点在直线,且,,把代入,所以点的坐标是,因为点在直线上,所以;(3)设点,则,,因为,,解得:,则,所以点的坐标为.【点睛】此题考查一次函数图象上点的坐标特征,待定系数法求一次函数解析式,解题关键在于分别代入x=0、y=023、(1)见解析(2)当AM=2时,说明四边形是矩形【解析】

(1)根据菱形的性质可得AB∥CD,根据两直线平行,内错角相等可得∠NDE=∠MAE,根据对顶角相等可得∠DEN=∠AEM,根据中点的定义求出DE=AE,然后利用“角边角”证明△NDE和△MAE全等,根据全等三角形对应边相等得到ND=AM,然后利用一组对边平行且相等的四边形是平行四边形证明;

(2)首先证明△AEM是等边三角形,进而得到AE=ED=EM,利用三角形一边上的中线等于斜边一半判断出△AMD是直角三角形,进而得出四边形AMDN是矩形.【详解】(1)∵点E是AD边的中点,∴AE=ED,∵AB∥CD,∴∠NDE=∠MAE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE∴△NDE≌△MAE(ASA),∴ND=AM,∵ND∥AM,∴四边形AMDN是平行四边形;(2)当AM=2时,说明四边形是矩形.∵E是AD的中点,∴AE=2,∵AE=AM,∠EAM=60°,∴△AME是等边三角形,∴AE=EM,∴AE=ED=EM,∴∠AMD=90°,∵四边形ABCD是菱形,故当AM=2时,四边形AMDN是矩形.【点睛】本题考查矩形的判定、菱形的性质和平行四边形的判定,解题的关键是掌握矩形的判定、菱形的性质和平行四边形的判定.24、(1)300千米;(2)甲对应的函数解析式为:y=60x,乙对应的函数解析式为y=100x−100;(3)1.5;(4)小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米【解析】

(1)根据函数图象可以解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论