2023年山东滨州无棣县数学八下期末综合测试模拟试题含解析_第1页
2023年山东滨州无棣县数学八下期末综合测试模拟试题含解析_第2页
2023年山东滨州无棣县数学八下期末综合测试模拟试题含解析_第3页
2023年山东滨州无棣县数学八下期末综合测试模拟试题含解析_第4页
2023年山东滨州无棣县数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,正方形的边长为2,点为的中点,连接,将沿折叠,点的对应点为.连接CF,则的长为()A. B. C. D.2.如图,在中,点分别是的中点,则下列四个判断中不一定正确的是()A.四边形一定是平行四边形B.若,则四边形是矩形C.若四边形是菱形,则是等边三角形D.若四边形是正方形,则是等腰直角三角形3.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.224.如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是()A.AE=BF B.∠DAE=∠BFCC.∠AEB+∠BFC=90° D.AE⊥BF5.若正比例函数的图像经过第一、三象限,则的值可以是()A.3 B.0或1 C. D.6.下列选项中,平行四边形不一定具有的性质是()A.两组对边分别平行 B.两组对边分别相等C.对角线互相平分 D.对角线相等7.已知不等式组的解集如图所示(原点未标出,数轴的单位长度为1),则的值为()A.4 B.3 C.2 D.18.下列图形中既是中心对称图形,又是轴对称图形的是()A. B.C. D.9.已知:,计算:的结果是()A. B. C. D.10.若关于x的一元二次方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1且k≠0 B.k≥﹣1 C.k≤1 D.k≤1且k≠0二、填空题(每小题3分,共24分)11.如图,的周长为26,点,都在边上,的平分线垂直于,垂足为点,的平分线垂直于,垂足为点,若,则的长为______.12.已知平行四边形ABCD中,AB=5,AE平分∠DAB交BC所在直线于点E,CE=2,则AD=_____.13.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为_____14.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.15.若一直角三角形的两边长为4、5,则第三边的长为________.16.方程的根为________.17.如图如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AECH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3…Sn(n为正整数),那么第818.如图,△ABC是等腰直角三角形,∠A=90°,点P.Q分別是AB、AC上的动点,且满足BP=AQ,D是BC的中点,当点P运动到___时,四边形APDQ是正方形.三、解答题(共66分)19.(10分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.20.(6分)已知一次函数.(1)当m取何值时,y随x的增大而减小?(2)当m取何值时,函数的图象过原点?21.(6分)如图是一个三级台阶,它的第一级的长、宽、高分别为20dm,3dm,2dm,点和点是这个台阶两个相对的端点,点处有一只蚂蚁,想到点去吃可口的食物,则蚂蚁沿着台阶面爬到点的最短路程是多少?22.(8分)如图所示,在直角坐标系xOy中,一次函数=x+b(≠0)的图象与反比例函数的图象交于A(1,4),B(2,m)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积;(3)当x的取值范围是时,x+b>(直接将结果填在横线上)23.(8分)如果一个多位自然数的任意两个相邻数位上,右边数位上的数总比左边数位上的数大1,则我们称这样的自然数叫“美数”,例如:123,3456,67,…都是“美数”.(1)若某个三位“美数”恰好等于其个位的76倍,这个“美数”为.(2)证明:任意一个四位“美数”减去任意一个两位“美数”之差再减去1得到的结果定能被11整除;(3)如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数大1,则我们称这样的自然数叫“妙数”,若任意一个十位为为整数)的两位“妙数”和任意一个个位为为整数)的两位“美数”之和为55,则称两位数为“美妙数”,并把这个“美妙数”记为,则求的最大值.24.(8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年的月均用水量(单位:吨),并将调查数据进行了如下整理:4.72.13.12.35.22.87.34.34.86.74.55.16.58.92.24.53.23.24.53.53.53.53.64.93.73.85.65.55.96.25.73.94.04.07.03.79.54.26.43.54.54.54.65.45.66.65.84.56.27.5(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?25.(10分)先化简:,再从中选取一个合适的代入求值.26.(10分)已知:如图,在正方形ABCD中,E为DC上一点,AF平分∠BAE且交BC于点F.

求证:BF+DE=AE.

参考答案一、选择题(每小题3分,共30分)1、D【解析】

连接AF交BE于点O,过点F作MN⊥AB,由勾股定理可求BE的长,由三角形面积公式可求AO的长,由折叠的性质可得AO=OH=,AB=BF=2,由勾股定理可求BN,FN的长,由矩形的性质可求FM,MC的长,由勾股定理可求CF的长.【详解】解:如图,连接AF交BE于点O,过点F作MN⊥AB,∵AB∥CD,MN⊥AB,∴MN⊥CD,∵AB=2=AD,点E是AD中点,∴AE=1,∴EB=,∵S△ABE=×AB×AE=×BE×AO,∴2×1=AO,∴AO=,∵将△ABE沿BE折叠,点A的对应点为F,∴AO=OH=,AB=BF=2,∴AF=,∵AF2-AN2=FN2,BF2-BN2=FN2,∴AF2-AN2=BF2-BN2,∴-(2-BN)2=4-BN2,∴BN=,∴FN=,∵MN⊥AB,MN⊥CD,∠DCB=90°,∴四边形MNBC是矩形,∴BN=MC=,BC=MN=2,∴MF=,∴CF=.故选:D.【点睛】本题考查了正方形的性质,矩形的判定,勾股定理,利用勾股定理列出等式求线段的长是本题的关键.2、C【解析】

利用正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定进行依次推理,可求解.【详解】解:∵点D,E,F分别是AB,BC,AC的中点,,∴四边形ADEF是平行四边形故A正确,若∠B+∠C=90°,则∠A=90°∴四边形ADEF是矩形,故B正确,若四边形ADEF是菱形,则AD=AF,∴AB=AC∴△ABC是等腰三角形故C不一定正确若四边形ADEF是正方形,则AD=AF,∠A=90°∴AB=AC,∠A=90°∴△ABC是等腰直角三角形故D正确故选:C.【点睛】本题考查了正方形的性质,矩形的判定,菱形的性质,平行四边形的判定,等腰直角三角形的判定,熟练运用这些性质进行推理是本题的关键.3、D【解析】

观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.4、C【解析】

根据正方形的性质可证明△ABE≌△BCF,通过△ABE≌△BCF逐一判断即可【详解】∵AD//BC,∴∠DAE=∠AEB,∵BE=CF,AB=BC,∠ABE=∠BCF,∴△ABE≌△BCF,∴AE=BF,∠DAE=∠BFC,∵∠FBC+∠BFC=90°,∠AEB=∠BFC,∴∠FBC+AEB=90°,∴AE⊥BF,所以A、B、D三个选项正确,∠AEB=∠BFC,故C选项错误,故选C【点睛】本题考查正方形的性质及全等三角形的判断,熟练掌握相关知识是解题关键.5、A【解析】

根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.【详解】解:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.【点睛】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.6、D【解析】

根据平行四边形的性质:平行四边形的对边相等且平行,对角线互相平分,可得正确选项.【详解】∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴选项A.B.C正确,D错误.故选D.【点睛】本题考查平行四边形的性质,解题关键在于对平行四边形性质的理解.7、A【解析】

首先解不等式组,然后即可判定的值.【详解】,解得,解得由数轴,得故选:A.【点睛】此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.8、D【解析】

轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于掌握其定义9、C【解析】

原式利用多项式乘以多项式法则计算,整理后将已知等式代入计算即可求出值.【详解】∵,,

∴,

故选:C.【点睛】本题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.10、A【解析】

根据一元二次方程的定义和判别式的意义得到k≠1且△=22-4k×(-1)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得k≠1且△=22-4k×(-1)≥1,解得k≥-1且k≠1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=1(a≠1)的根的判别式△=b2-4ac:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义.二、填空题(每小题3分,共24分)11、3【解析】

首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.【详解】由题知为的垂直平分线,,由题意知为的垂直平分线,.,且,....又点,分别为,的中点,.【点睛】本题考查等腰三角形的判定与性质,解题关键在于利用中位线定理求出PQ.12、3或7【解析】分两种情况:(1)当AE交BC于点E时;在平行四边形ABCD中,则AD∥BC,DC=AB,AD=BC∴∠AEB=∠EAD,∵∠DAB的平分线交BC于E,∴∠AEB=∠BAE,∴∠AEB=∠BAE,∴AB=BE,设AD=x,z则BE=x-2=5∴AD=5+2=7cm,(2)当AE交BC于点E,交CD于点F∵ABCD为平行四边形,∴AB=DC=5cm,AD=BC,AD∥BC.∴∠E=∠EAD,又∵BE平分∠BAD,∴∠EAD=∠EAB,∴∠EAB=∠E,∴BC+CE=AB=5,∴AD=BC=5−2=3(cm).故答案为3或7点睛:本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,关键是要分两种情况讨论解答.13、3.【解析】

由直角三角形的性质得到AC=2OB=10,利用勾股定理求出AB=CD=6,再根据三角形的中位线得到OM的长度.【详解】∵四边形ABCD是矩形,∴∠ABC=∠D=90,AB=CD,∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=,∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线,∴OM=CD=3,故填:3.【点睛】此题考查矩形的性质,矩形的一条对角线将矩形分为两个全等的直角三角形,根据直角三角形斜边中线等于斜边的一半求得AC,根据勾股定理求出CD,在利用三角形的中位线求出OM.14、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.15、或1【解析】

解:当4和5都是直角边时,则第三边是;当5是斜边时,则第三边是;

故答案是:和1.16、【解析】

运用因式分解法可解得.【详解】由得故答案为:【点睛】考核知识点:因式分解法解一元二次方程.17、128【解析】

由题意可以知道第一个正方形的边长为1,第二个正方形的边长为2,第三个正方形的边长为2,就有第n个正方形的边长为2(n-1),再根据正方形的面积公式就可以求出结论.【详解】第一个正方形的面积为1,故其边长为1=20;第二个正方形的边长为2,其面积为2=21;第三个正方形的边长为2,其面积为4=22;第四个正方形的边长为22,其面积为8=23;…第n个正方形的边长为(2)n-1,其面积为2n-1.当n=8时,S8=28-1,=27=128.故答案为:128.【点睛】此题考查正方形的性质,解题关键在于找到规律.18、AB的中点.【解析】

若四边形APDQ是正方形,则DP⊥AP,得到P点是AB的中点.【详解】当P点运动到AB的中点时,四边形APDQ是正方形;理由如下:∵∠BAC=90°,AB=AC,D为BC中点,∴AD⊥BC,AD=BD=DC,∠B=∠C=45°,∴△ABD是等腰直角三角形,当P为AB的中点时,DP⊥AB,即∠APD=90°,又∵∠A=90°,∠PDQ=90°,∴四边形APDQ为矩形,又∵DP=AP=AB,∴矩形APDQ为正方形,故答案为AB的中点.【点睛】此题考查正方形的判定,等腰直角三角形,解题关键在于证明△ABD是等腰直角三角形三、解答题(共66分)19、(﹣3,2)【解析】

先作点D关于直线AB的对称点D′,连接CD′交AB于点E′.根据矩形的性质及题意得到直线CD′的解析式,即可得到答案.【详解】如图,作点D关于直线AB的对称点D′,连接CD′交AB于点E′.此时△DCE′的周长最小.∵四边形AOCB是矩形,B(﹣3,5),∴OA=3,OC=5,∵AD=2OD,∴AD=2,OD=1,∴AD′=AD=2,∴D′(﹣5,0),∵C(0,5),∴直线CD′的解析式为y=x+5,∴E′(﹣3,2).【点睛】本题考查矩形的性质和求一元一次方程,解题的关键是掌握矩形的性质和求一元一次方程.20、(1);(2)【解析】

(1)根据k<0即可求解;(2)把(0,0)代入即可求解.【详解】(1)由得(2)解得【点睛】此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像与性质.21、最短路程是25dm.【解析】

先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【详解】三级台阶平面展开图为长方形,长为20dm,宽为,则蚂蚁沿台阶面爬行到点最短路程是此长方形的对角线长.可设蚂蚁台阶面爬行到点最短路程为.由勾股定理,得,解得.因此,蚂蚁沿着台阶面爬到点的最短路程是25dm.【点睛】此题考查平面展开-最短路径问题,解题关键在于利用勾股定理进行计算.22、(1),;(1)3;(3)x<0或【解析】

(1)把(1,4)代入y=,易求k1,从而可求反比例函数解析式,再把B点坐标代入反比例函数解析式,易求m,然后把A、B两点坐标代入一次函数解析式,易得关于k1、b的二元一次方程,解可求k1、b,从而可求一次函数解析式;

(1)设直线AB与x轴交于点C,再根据一次函数解析式,可求C点坐标,再根据分割法可求△AOB的面积;

(3)观察可知当x<0或1<x<3时,k1x+b>.【详解】解:(1)把(1,4)代入y=,得

k1=4,

∴反比例函数的解析式是y=,

当x=1时,y=,

∴m=1,

把(1,4)、(1,1)代入y1=k1x+b中,得

解得,

∴一次函数的解析式是y=-1x+6;(1)设直线AB与x轴交于点C,

当y=0时,x=3,

故C点坐标是(3,0),

∴S△AOB=S△AOC-S△BOC=×3×4-×3×1=6-3=3;(3)在第一象限,当1<x<1时,k1x+b>;

还可观察可知,当x<0时,k1x+b>.

∴x<0或1<x<1.【点睛】本题考查了待定系数法求函数解析式、一次函数与反比例函数的交点问题,解题的关键是先求出反比例函数,进而求B点坐标,然后求出一次函数的解析式.23、(1)456(2)见解析(3)42【解析】

(1)设这个“美数”的个位数为x,则根据题意可得方程,解方程求出x的值即可得出答案.(2)设四位“美数”的个位为x、两位“美数””的个位为y,分别表示出四位“美数”和两位“美数”,再将四位“美数”减去任意一个两位“美数””之差再加上1的结果除以11判断结果是否为整数即可;(3)根据题意两个数之和为55得出二元一次方程,化简方程,再根据x与y的取值范围,即可求出最大值.【详解】(1)设其个位数为x,则解得:x=6则这个“美数”为:(2)设四位“美数”的个位为x、两位“美数””的个位为y,根据题意得:==即:式子结果是11的倍数(3)根据题意:,由10x+y可得x越大越大,即y为最小值时的值最大则x=4,y=2时的值最大的最大值为【点睛】本题主要考查二元一次方程的应用,解题关键是设个位数的数为x得出方程并解答.24、(1)见解析;(2)答案不唯一;(3)我觉得家庭月均用水量应该定为5吨【解析】

(1)根据题中给出的50个数据,从中分别找出5.0<x≤6.5与

6.5<x≤8.0

的个数,进行划记,得到对应的频数,进而完成频数分布表和频数分布直方图;(2)从直方图可以看出:居民月平均用水量大部分在2.0至6.5之间;居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;居民月均用水量在8.0<x≤9.5范围内的最少,只有2户等.(3)根据共有50个家庭,要使60%的家庭收费不受影响,即要使30户的家庭收费不受影响,而11+19=30,故家庭月均用水量应该定为5吨,即可得出答案.【详解】(1)(1)5.0<x≤6.5共有13个,则频数是13,6.5<x≤8.0共有5个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论