版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.在某市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟2.如图,直线y=-x+2与x轴交于点A,则点A的坐标是()A.(2,0) B.(0,2) C.(1,1) D.(2,2)3.把函数与的图象画在同一个直角坐标系中,正确的是()A. B.C. D.4.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣15.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.一次函数的图像如图,那么下列说法正确的是().A.时, B.时, C.时, D.时,7.甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是()队员平均成绩方差甲9.72.12乙9.60.56丙9.70.56丁9.61.34A.甲 B.乙 C.丙 D.丁8.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是()A.1999年 B.2004年 C.2009年 D.2014年9.某水资源保护组织对邢台某小区的居民进行节约水资源的问卷调查.某居民在问卷的选项代号上画“√”,这个过程是收集数据中的()A.确定调查范围 B.汇总调查数据C.实施调查 D.明确调查问题10.如图,在3×3的正方形网格中由四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()A.A点 B.B点 C.C点 D.D点11.直线与轴的交点坐标是()A. B. C. D.12.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省()元A.3 B.4 C.5 D.6二、填空题(每题4分,共24分)13.分解因式:_____.14.如图,△ABC与△A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__.15.如图,在四边形中,交于E,若,则的长是_____________16.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为1.17.已知a+=,则a-=__________18.已知m>0,则在平面直角坐标系中,点M(m,﹣m2﹣1)的位置在第_____象限;三、解答题(共78分)19.(8分)解不等式组,并把不等式组的解集在数轴上表出来20.(8分)如图,在□ABCD中,点E在BC上,AB=BE,BF平分∠ABC交AD于点F,请用无刻度的直尺画图(保留作图痕迹,不写画法).(1)在图1中,过点A画出△ABF中BF边上的高AG;(2)在图2中,过点C画出C到BF的垂线段CH.21.(8分)如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB.(1)求直线OB与AB的解析式;(2)求△AOB的面积.(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.①在y轴上是否存在一点P,使△PAB周长最小.若存在,请直接写出点P坐标;若不存在,请说明理由.②在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形.若存在,请直接写出点C坐标;若不存在,请说明理由.22.(10分)如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点A在x轴上,点C在y轴上且A(10,0),C(0,6),点D在AB边上,将△CBD沿CD翻折,点B恰好落在OA边上点E处.(1)求点E的坐标;(2)求折痕CD所在直线的函数表达式;(3)请你延长直线CD交x轴于点F.①求△COF的面积;②在x轴上是否存在点P,使S△OCP=S△COF?若存在,求出点P的坐标;若不存在,请说明理由.23.(10分)利用我们学过的知识,可以导出下面这个等式:.该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你展开右边检验这个等式的正确性;(2)利用上面的式子计算:.24.(10分)关于x的方程:-=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.25.(12分)一个工程队修一条3000米的公路,由于开始施工时增加了人员,实际每天修路比原来多50%,结果提前2天完成,求实际每天修路多少米?26.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,在平面直角坐标系中如图所示:完成下列问题:(1)画出△ABC绕点O逆时针旋转90∘后的△ABC;点B1的坐标为___;(2)在(1)的旋转过程中,点B运动的路径长是___(3)作出△ABC关于原点O对称的△ABC;点C的坐标为___.
参考答案一、选择题(每题4分,共48分)1、C【解析】
由横纵坐标可判断A、B,观察图象比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面可判断C,由图象得乙队在1.1至1.9分钟的路程为300米,可判断D.【详解】由纵坐标看出,这次龙舟赛的全程是500m,故选项A正确;由横坐标可以看出,乙队先到达终点,故选项B正确;∵比赛中两队从出发到1.1分钟时间段,乙队的图象在甲图象的下面,∴乙队的速度比甲队的速度慢,故C选项错误;∵由图象可知,乙队在1.1分钟后开始加速,加速的总路程是500-200=300(米),加速的时间是1.9-1.1=0.8(分钟),∴乙与甲相遇时,乙的速度是300÷0.8=375(米/分钟),故D选项正确.故选C.【点睛】本题主要考查一次函数的图象与实际应用,观察图象理解图象中每个特殊点的实际意义是解题的关键.2、A【解析】
一次函数y=kx+b(k≠0,且k,b为常数)的图象是一条直线.令y=0,即可得到图象与x轴的交点.【详解】解:直线中,令.则.解得.∴.故选:A.【点睛】本题主要考查了一次函数图象上点的坐标特征,一次函数y=kx+b(k≠0,且k,b为常数)与x轴的交点坐标是(−,0),与y轴的交点坐标是(0,b).3、D【解析】
根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【详解】解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.故选D.【点睛】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.4、B【解析】解:分式方程去分母得:2x-a=x+1,解得:x=a+1.根据题意得:a+1>3且a+1+1≠3,解得:a>-1且a≠-2.即字母a的取值范围为a>-1.故选B.点睛:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为3.5、B【解析】试题分析:先把与组成方程组求得交点坐标,即可作出判断.由解得所以函数的图象与函数的图象的交点在第二象限故选B.考点:点的坐标点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6、D【解析】
根据函数图象可以直接得到答案.【详解】A、如图所示,当x>0时,y<4,故本选项错误;B、如图所示,当x<0时,y>4,故本选项错误;C、如图所示,当x>2时,y<0,故本选项错误;D、如图所示,当x<2时,y>0,故本选项正确;故选D.【点睛】考查了一次函数图象和一次函数的性质,解答此题,需要学生具备一定的读图能力,难度中等.7、C【解析】
首先比较平均数,然后比较方差,方差越小,越稳定.【详解】∵==9.7,S2甲>S2丙,∴选择丙.故选:C.【点睛】此题考查了方差的知识.注意方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.8、C【解析】
把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年,∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C.【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.9、C【解析】
根据收集数据的几个阶段可以判断某居民在问卷上的选项代号画“√”,属于哪个阶段,本题得以解决.【详解】解:某居民在问卷上的选项代号画“√”,这是数据中的实施调查阶段,故选:C.【点睛】本题考查调查收集数据的过程与方法,解题的关键是明确收集数据的几个阶段.10、B【解析】试题解析:当以点B为原点时,A(-1,-1),C(1,-1),则点A和点C关于y轴对称,符合条件,故选B.【点睛】本题考查的是关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.11、A【解析】
根据直线与x轴的交点,y=0时,求得的x的值,就是直线与x轴相交的横坐标,计算求解即可.【详解】解:当y=0时,可得计算所以直线与x轴的交点为:故选A.【点睛】本题主要考查直线与坐标轴的相交问题,这是一次函数的常考点,与x轴相交,y=0,与y轴相交,则x=0.12、B【解析】
根据OA段可求出每千克苹果的金额,再由函数图像可得一次购买3千克这种苹果的金额,故可比较.【详解】根据OA段可得每千克苹果的金额为20÷2=10(元)故分三次每次购买1千克这种苹果的金额为3×10=30(元)由函数图像可得一次购买3千克这种苹果的金额26(元)故节省30-26=4(元)故选B.【点睛】此题主要考查函数图像的应用,解题的关键是根据题意求出每千克苹果的金额数.二、填空题(每题4分,共24分)13、【解析】
直接提取公因式a即可得答案.【详解】3a2+a=a(3a+1),故答案为:a(3a+1)【点睛】本题考查提取公因式法分解因式,正确找出公因式是解题关键.14、(9,0)【解析】
根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).15、【解析】
过点A作AM⊥BD于M,先证明△AEM≌△BEC,得出AM=BC,BE=ME,再根据得出三角形ADM是等腰直角三角形,从而得出AM=BC,结合已知和勾股定理得出DB和BC的长即可【详解】过点A作AM⊥BD于M,则∵∴∵EA=EC,∴∴AM=BC,BE=ME∵则设EB=2k,ED=5k∴EM=2k,DM=3k∵,∴AM=DM=BC=3k,BM=4k则AB=5k=5,k=1∴DB=7,BC=3∵∴DC=故答案为:【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质与判定,以及勾股定理,熟练掌握相关知识是解题的关键16、(﹣4,3).【解析】
求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=,∴y=x+6,∴P(x,x+6),由题意:×6×(x+6)=1,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【点睛】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.17、【解析】
通过完全平方公式即可解答.【详解】解:已知a+=,则==10,则==6,故a-=.【点睛】本题考查完全平方公式的运用,熟悉掌握是解题关键.18、四【解析】
直接利用各象限内点的坐标特点得出点的位置.【详解】,,点的位置在第四象限.故答案为:四.【点睛】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.三、解答题(共78分)19、-4≤x<3,见解析【解析】
解一元一次不等式组求解集,并把不等式的解集在数轴上表示出来即可.【详解】解:解不等式①,得解不等式②,得原不等式组的解集为:在数轴上表示为:【点睛】本题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,能够正确表示不等式组的解集是解题的关键.20、(1)见解析;(2)见解析.【解析】
(1)连接AE,交BF于点G,则AG即为所求,理由为:AB=AE,BF平分∠ABC,根据等腰三角形三线合一的性质可得BG⊥AG;(2)连接AC、BD交于点O,连接EO并延长交AD于点G,连接CG交BF于点H,CH即为所求,理由:由平行四边形的性质以及作法可得△BOE≌△DOG,由此可得DG=BE=AB=CD,继而可得CG平分∠BCD,由AB//CD可得∠ABC+∠BCD=180°,继而可得∠FBC+∠GCB=90°,即∠BHC=90°,由此即可得答案.【详解】(1)如图1,AG即为所求;(2)如图2,CH即为所求.【点睛】本题考查了作图——无刻度直尺作图,涉及了等腰三角形的性质,平行四边形的性质等知识,熟练掌握相关知识是解题的关键.21、(1)直线OB的解析式为,直线AB的解析式为y=-x+1(2)1;(3)①存在,(0,);②存在,(2,-2)或(4,6)或(-2,2)【解析】
(1)根据题意分别设出两直线的解析式,代入直线上两点坐标即可求出直线OB与AB的解析式;(2)延长线段AB交x轴于点D,求出D的坐标,分别求出、由即可求得;(3)①根据两点之间线段最短,A、B在y轴同侧,作出点A关于y的对称点,连接B与y轴的交点即为所求点P;②使以A,O,C,B为顶点的四边形是平行四边形,则分三种情况分析,分别以OA、AB、OB为对角线作出平行四边形,利用中点坐标公式代入求解即可.【详解】解:(1)设直线OB的解析式为y=mx,∵点B(3,2),∴,∴直线OB的解析式为,设直线AB的解析式为y=kx+b,根据题意可得:解之得∴直线AB的解析式为y=-x+1.故答案为:直线OB的解析式为,直线AB的解析式为y=-x+1;(2)如图,延长线段AB交x轴于点D,当y=0时,-x+1=0,x=1,∴点D横坐标为1,OD=1,∴,∴,故答案为:1.(3)①存在,(0,);过点A作y轴的对称点,连接B,交y轴与点P,则点P即为使△PAB周长最小的点,由作图可知,点坐标为,又点B(3,2)则直线B的解析式为:,∴点P坐标为,故答案为:;②存在.或或.有三种情况,如图所示:设点C坐标为,当平行四边形以AO为对角线时,由中点坐标公式可知,AO的中点坐标和BC中点坐标相同,∴解得∴点坐标为,当平行四边形以AB为对角线时,AB的中点坐标和OC的中点坐标相同,则∴点的坐标为,当平行四边形以BO为对角线时,BO的中点坐标和AC的中点坐标相同,则解得∴点坐标为,故答案为:存在,或或.【点睛】本题考查了直线解析式的求法,列二元一次方程组求解问题,割补法求三角形的面积,两点之间线段最短,“将军饮马”模型的应用,添加点构造平行四边形,利用中点坐标公式求点坐标题型.22、(1)E(8,0);(2)y=﹣x+6(3)①54;②点P的坐标为(6,0)或(﹣6,0).【解析】
(1)根据折叠的性质知CE=CB=1.在在直角△COE中,由勾股定理求得OE=8;(2)根据OC=6知C(0,6),由折叠的性质与勾股定理,求得D(1,),利用待定系数法求CD所在直线的解析式;(3)①根据F(18,0),即可求得△COF的面积;②设P(x,0),依S△OCP=S△CDE得×OP×OC=×54,即×|x|×6=18,求得x的值,即可得出点P的坐标.【详解】(1)如图,∵四边形ABCD是长方形,∴BC=OA=1,∠COA=90°,由折叠的性质知,CE=CB=1,∵OC=6,∴在直角△COE中,由勾股定理得OE==8,∴E(8,0);(2)设CD所在直线的解析式为y=kx+b(k≠0),∵C(0,6),∴b=6,设BD=DE=x,∴AD=6-x,AE=OA-OE=2,由勾股定理得AD2+AE2=DE2即(6-x)2+22=x2,解得x=,∴AD=6-=,∴D(1,),代入y=kx+6得,k=-,故CD所在直线的解析式为:y=-x+6;(3)①在y=-x+6中,令y=0,则x=18,∴F(18,0),∴△COF的面积=×OF×OC=×18×6=54;②在x轴上存在点P,使得S△OCP=S△COF,设P(x,0),依题意得×OP×OC=×54,即×|x|×6=18,解得x=±6,∴在x轴上存在点P,使得S△OCP=S△COF,点P的坐标为(6,0)或(-6,0).【点睛】本题属于四边形综合题,主要考查了矩形的性质,折叠的性质,勾股定理以及待定系数法求一次函数的解析式的综合应用.解答此题时注意坐标与图形的性质的运用以及方程思想的运用.23、(1)见解析;(2)1.【解析】
(1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
(2)根据题目中的等式可以求得所求式子的值.【详解】解:(1)[(a-b)2+(b-c)2+(c-a)2]
=(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
=×(2a2+2b2+2c2-2ab-2bc-2ac)
=a2+b2+c2-ab-bc-ac,
故a2+b2+c2-ab-bc-ac=[(a-b)2+(b-c)2+(c-a)2]正确;
(2)20182+20192+20202-2018××2020-2018×2020
=×[()2+(2019-2020)2+(2020-2018)2]
=×(1+1+4)
=×6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文化场馆电梯买卖合同
- 考古设备租赁合同
- 投资房产转让委托合同模板
- 交通运输工程全包施工协议
- 2024至2030年模式转换器项目投资价值分析报告
- 科技人才公租房租赁合同
- 水上婚礼婚纱礼服游艇租赁合同
- 临时用车租赁协议书
- 2024至2030年全自动粉粒包装机项目投资价值分析报告
- 酒吧个性化定制服务协议
- 期末模拟试卷(试题)-2024-2025学年六年级上册数学人教版
- 2024年江苏省高中信息技术合格考真题Python操作题第一套试卷(含答案解析)
- 观光电梯安装玻璃幕墙项目施工方案
- 2024-2025学年统编版道德与法治一年级上册教学设计(附目录)
- 小学三年(2023-2025)发展规划三篇
- 2024年中考语文复习分类必刷:非连续性文本阅读(含答案解析)
- 2024年领导干部任前廉政知识测试试卷题库及答案
- 广告物料、标识牌、宣传品投标方案
- 中等职业技术学校人工智能技术应用专业(三年制)人才培养方案
- 2024年新北师大版一年级上册数学全册课件
- 伤口造口专科护士进修汇报
评论
0/150
提交评论