黑龙江省大庆市第六十一中学2022-2023学年八年级数学第二学期期末教学质量检测试题含解析_第1页
黑龙江省大庆市第六十一中学2022-2023学年八年级数学第二学期期末教学质量检测试题含解析_第2页
黑龙江省大庆市第六十一中学2022-2023学年八年级数学第二学期期末教学质量检测试题含解析_第3页
黑龙江省大庆市第六十一中学2022-2023学年八年级数学第二学期期末教学质量检测试题含解析_第4页
黑龙江省大庆市第六十一中学2022-2023学年八年级数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.一个正多边形的每个内角的度数都等于相邻外角的2倍,则该正多边形的边数是()A.3 B.4 C.6 D.122.如图,在平面直角坐标系中,为,,与轴重合,反比例函数的图象经过中点与相交于点,点的横坐标为,则的长()A. B. C. D.3.已知点A(0,0),B(0,4),C(3,t+4),D(3,t).记N(t)为ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N(t)所有可能的值为A.6、7 B.7、8 C.6、7、8 D.6、8、94.如图,数轴上表示一个不等式的解集是()A. B. C. D.5.若x、y都是实数,且,则xy的值为A.0 B. C.2 D.不能确定6.如果关于x的分式方程ax+1-3=1-xx+1有负数解,且关于y的不等式组A.﹣2 B.0 C.1 D.37.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时 B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇 D.甲到B地比乙到A地早小时8.根据二次函数y=-x2+2x+3的图像,判断下列说法中,错误的是()A.二次函数图像的对称轴是直线x=1;B.当x>0时,y<4;C.当x≤1时,函数值y是随着x的增大而增大;D.当y≥0时,x的取值范围是-1≤x≤3时.9.下列事件中,是必然事件的是()A.3天内会下雨B.经过有交通信号灯的路口遇到红灯C.打开电视,正在播广告D.367人中至少有2个人的生日相同10.如图所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是A. B. C. D.11.如图,在正方形中,点是的中点,点是的中点,与相交于点,设.得到以下结论:①;②;③则上述结论正确的是()A.①② B.①③C.②③ D.①②③12.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形 B.八边形 C.七边形 D.六边形二、填空题(每题4分,共24分)13.如图,某居民小区要一块一边靠墙的空地上建一个长方形花园,花园的中间用平行于的栅栏隔开,一边靠墙,其余部分用总长为米的栅栏围成且面积刚好等于平方米,求围成花园的宽为多少米?设米,由题意可列方程为______.14.有一段斜坡,水平距离为120米,高50米,在这段斜坡上每隔6.5米种一棵树(两端各种一棵树),则从上到下共种____棵树.15.图,矩形中,,,点是矩形的边上的一动点,以为边,在的右侧构造正方形,连接,则的最小值为_____.16.如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,若将△APB绕着点B逆时针旋转后得到△CQB,则∠APB的度数______.17.已知一次函数y=kx+3k+5的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为_____18.若二次根式有意义,则的取值范围是________.三、解答题(共78分)19.(8分)已知,如图,点E为▱ABCD内任意一点,若▱ABCD的面积为6,连结点E与▱ABCD的四个顶点,求图中阴影部分的面积.20.(8分)已知,在平面直角坐标系中,一次函数y=kx-3(k≠0)交x轴于点A,交y轴与点B.(1)如图1,若k=1,求线段AB的长;(2)如图2,点C与点A关于y轴对称,作射线BC;①若k=3,请写出以射线BA和射线BC所组成的图形为函数图像的函数解析式;②y轴上有一点D(0,3),连接AD、CD,请判断四边形ABCD的形状并证明;若≥9,求k的取值范围21.(8分)今年人夏以来,松花江哈尔滨段水位不断下降,达到历史最低水位,一条船在松花江某水段自西向东沿直线航行,在处测得航标在北偏东方向上,前进米到达处,又测得航标在北偏东方向上,如图在以航标为圆心,米长为半径的圆形区域内有浅滩,如果这条船继续前进,是否有被浅滩阻碍的危险?()22.(10分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.23.(10分)小明从家出发,沿一条直道跑步,经过一段时间原路返回,刚好在第16分钟回到家中.设小明出发第t分钟的速度为v米/分,离家的距离为s米.v与t之间的部分图象、s与t之间的部分图象分别如图1与图2(图象没画完整,其中图中的空心圈表示不包含这一点),则当小明离家600米时,所用的时间是()分钟.A.4.5 B.8.25 C.4.5或8.25 D.4.5或8.524.(10分)甲、乙两人参加射箭比赛,两人各射了5箭,他们的成绩(单位:环)统计如下表.第1箭第2箭第3箭第4箭第5箭甲成绩94746乙成绩75657(1)分别计算甲、乙两人射箭比赛的平均成绩;(2)你认为哪个人的射箭成绩比较稳定?为什么?25.(12分)五一期间,甲、乙两人分别骑自行车和摩托车从地出发前往地郊游,并以各自的速度匀速行驶,到达目的地停止,途中乙休息了一段时间,然后又继续赶路.甲、乙两人各自行驶的路程与所用时间之间的函数图象如图所示.(1)甲骑自行车的速度是_____.(2)求乙休息后所行的路程与之间的函数关系式,并写出自变量的取值范围.(3)为了保证及时联络,甲、乙两人在第一次相遇时约定此后两人之间的路程不超过.甲、乙两人是否符合约定,并说明理由.26.如图,在平面直角坐标系中,点是坐标原点,四边形是菱形,点的坐标为,点在轴的正半轴上,直线交轴于点,边交轴于点,连接(1)菱形的边长是________;(2)求直线的解析式;(3)动点从点出发,沿折线以2个单位长度/秒的速度向终点匀速运动,设的面积为,点的运动时间为秒,求与之间的函数关系式.

参考答案一、选择题(每题4分,共48分)1、C【解析】

首先根据这个正多边形的每个内角的度数都等于相邻外角的2倍,可得:这个正多边形的外角和等于内角和的2倍;然后根据这个正多边形的外角和等于310°,求出这个正多边形的内角和是多少,进而求出该正多边形的边数是多少即可.【详解】310°×2÷180°+2=720°÷180°+2=4+2=1∴该正多边形的边数是1.故选C.【点睛】此题主要考查了多边形的内角与外角的计算,解答此题的关键是要明确:(1)多边形内角和定理:(n-2)•180(n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为310°.2、B【解析】

把E点的横坐标代入,确定E的坐标,根据题意得到B的坐标为(2,4),把B的横坐标代入求得D的纵坐标,就可求得AD,进而求得BD.【详解】解:反比例函数的图象经过OB中点E,E点的横坐标为1,,∴E(1,2),∴B(2,4),∵△OAB为Rt△,∠OAB=90°,∴AB=4,把x=2代入得,∴AD=1,∴BD=AB-AD=4-1=3,故选:B.【点睛】此题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形中位线性质,解题的关键是求得B、D的纵坐标.3、C【解析】分析:应用特殊元素法求解:当t=0时,ABCD的四个项点是A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,ABCD的四个项点是A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=2时,ABCD的四个项点是A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;故选项A,选项B,选项D错误,选项C正确。故选C。4、C【解析】

根据在数轴上表示不等式解集的方法解答即可.【详解】∵-1处是空心圆圈,且折线向右,

∴这个不等式的解集是x>-1.

故选:C.【点睛】考查的是在数轴上表示不等式的解集.在数轴上实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.5、C【解析】由题意得,2x−1⩾0且1−2x⩾0,解得x⩾且x⩽,∴x=,y=4,∴xy=×4=2.故答案为C.6、B【解析】

解关于y的不等式组2(a-y)⩽-y-43y+42<y+1,结合解集无解,确定a的范围,再由分式方程ax+1-3=【详解】由关于y的不等式组2(a-y)⩽-y-43y+42<y+1∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵ax+1-3=1-xx+1而关于x的分式方程ax+1∴a﹣4<1∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、1、1、2、3则符合条件的所有整数a的和为1.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.7、D【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25=80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.8、B【解析】试题分析:,所以x=1时,y取得最大值4,时,y<4,B错误故选B.考点:二次函数图像点评:解答二次函数图像的问题,关键是读懂题目中的信息,正确化简出相应的格式,并与图像一一对应判断.9、D【解析】

根据必然事件的概念.(有些事情我们事先肯定它一定会发生,这些事情称为必然事件.)【详解】解:3天内会下雨是随机事件,A错误;经过有交通信号灯的路口遇到红灯是随机事件,B错误;打开电视,正在播广告是随机事件,C错误;367人中至少有2个人的生日相同是必然事件,D正确,故选:D.【点睛】本题主要考查必然事件与随机事件的区别,他们的区别在于必然事件一定会发生,随机事件有可能发生,有可能不发生.10、D【解析】

根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.【详解】根据折叠的图形分析可得在正方形的每个边上有三个圆点.共有12个点.观察选项即可的D选项符合条件.故选D.【点睛】本题主要考查正方形的折叠问题,关键在于确定数量.11、D【解析】

由正方形的性质和全等三角形的判定与性质,直角三角形的性质进行推理即可得出结论.【详解】解:如图,(1)所以①成立(2)如图延长交延长线于点,则:∴为直角三角形斜边上的中线,是斜边的一半,即所以②成立(3)∵∴∵∴所以③成立故选:D【点睛】本题考查的正方形的性质,直角三角形的性质以及全等三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.12、B【解析】【分析】n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8,∴这个多边形的边数是8,故选B.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.二、填空题(每题4分,共24分)13、【解析】

根据题意设AB=x米,则BC=(30-3x)m,利用矩形面积得出答案.【详解】解:设AB=x米,由题意可列方程为:x(30-3x)=1.故答案为:x(30-3x)=1.【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出BC的长是解题关键.14、21【解析】

先利用勾股定理求出斜边为130米,根据数的间距可求出树的棵数.【详解】∵斜坡的水平距离为120米,高50米,∴斜坡长为米,又∵树的间距为6.5,∴可种130÷6.5+1=21棵.【点睛】此题主要考察勾股定理的的应用.15、【解析】

过作,利用正方形的性质和全等三角形的判定得出,进而利用勾股定理解答即可.【详解】解:过作,正方形,,,,,,且,,,,,当时,的最小值为故答案为:【点睛】本题考查正方形的性质,关键是利用正方形的性质和全等三角形的判定得出.16、150°【解析】

首先证明△BPQ为等边三角形,得∠BQP=60°,由△ABP≌CBQ可得QC=PA,在△PQC中,已知三边,用勾股定理逆定理证出得出∠PQC=90°,可求∠BQC的度数,由此即可解决问题.【详解】解:连接PQ,由题意可知△ABP≌△CBQ

则QB=PB=4,PA=QC=3,∠ABP=∠CBQ,

∵△ABC是等边三角形,

∴∠ABC=∠ABP+∠PBC=60°,

∴∠PBQ=∠CBQ+∠PBC=60°,

∴△BPQ为等边三角形,

∴PQ=PB=BQ=4,

又∵PQ=4,PC=5,QC=3,

∴PQ2+QC2=PC2,

∴∠PQC=90°,

∵△BPQ为等边三角形,

∴∠BQP=60°,

∴∠BQC=∠BQP+∠PQC=150°

∴∠APB=∠BQC=150°【点睛】本题考查旋转的性质、等边三角形的判定和性质、勾股定理的逆定理等知识,解题的关键是勾股定理逆定理的应用,属于中考常考题型.17、-2【解析】

由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【详解】由已知得:,解得:-<k<2.∵k为整数,∴k=-2.故答案为:-2.【点睛】本题考查了一次函数图象与系数的关系,解题的关键是得出关于k的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,根据一次函数图象与系数的关系找出关于系数的不等式(或不等式组)是关键.18、【解析】

根据二次根式有意义的条件:被开方数≥0,列不等式即可.【详解】根据二次根式有意义的条件:解得:故答案为【点睛】此题考查的是二次根式有意义的条件,解决此题的关键是根据二次根式有意义的条件:被开方数≥0,列不等式.三、解答题(共78分)19、1【解析】

过E作MN⊥BC,交BC于M,交AD于N,得出△EBC的面积+△EAD的面积=AD•EN+BC•EM=BC•MN=平行四边形ABCD的面积,即可得出阴影部分的面积.【详解】解:过E作MN⊥BC,交BC于M,交AD于N,如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴EN⊥AD,∵S△AED=AD•EN,S△BCE=BC•EM,∴S△ADE+S△BCE=AD•EN+C•EM=BC•MN=平行四边形ABCD的面积=×6=1,∴阴影部分的面积=1.【点睛】本题主要考查了平行四边形的性质、阴影部分面积的计算;关键是掌握平行四边形的面积公式=底×高.20、(1);(2);(3)四边形ABCD为菱形,-2≤k≤2且k≠1.【解析】

(1)将k=1代入解析式中求出解析式,再令x=1,求出B点坐标进而求出OB的长,再在Rt△AOB中使用勾股定理即可求解;(2)①当k=3时,求出AB的解析式,进而求出点A的坐标,再根据对称性求出C点坐标,进而求出BC的解析式,再写出自变量的取值范围即可;②先证明OB=OD,OA=OC,且AC⊥BD,即可证明四边形ABCD为菱形,进而求出其面积.【详解】解:(1)由题意知,将k=1代入y=kx-3,即直线AB的解析式为:y=x-3,令x=1,求出B点坐标为(1,-3),故OB=3,令y=1,求出A点坐标为(3,1),故OA=3,在Rt△AOB中,由勾股定理有:,故答案为:;(2)①当k=3时,直线AB的解析式为:y=3x-3,令y=1,则x=1,求出点A的坐标为(1,1),令x=1,则y=-3,求出点B的坐标为(1,-3),∵点C与点A关于y轴对称,故点C(-1,1),设直线BC的解析式为:,代入B、C两点坐标:,解得,故直线BC的解析式为:,∴以射线BA和射线BC所组成的图形为函数图像的函数解析式为:,故答案为:;②四边形ABCD为菱形,理由如下:∵点B(1,-3),点D(1,3),故OB=OD,∵点C与点A关于y轴对称,∴OA=OC,由对角线互相平分的四边形是平行四边形知,四边形ABCD为平行四边形,又∵AC⊥BD,故四边形ABCD为菱形;令y=kx-3中y=1,解得,∴A(,1),则点C(,1),则AC=,∴菱形ABCD的面积为,解得:且,故答案为:且.【点睛】本题考查的是一次函数综合运用,涉及到一次函数的性质、菱形的性质、面积的计算等,综合性强,难度适中,熟练掌握一次函数的图像和性质及菱形的性质和判定是解决本题的关键.21、没有被浅滩阻碍的危险【解析】

过点C作CD⊥AB于点D,在直角△ACD和直角△BDC中,AD,BD都可以用CD表示出来,根据AB的长,就得到关于CD的方程,就可以解得CD的长,与120米进行比较即可.【详解】过点作,设垂足为,在中,在中,米米.米>米,故没有危险.答:若船继续前进没有被浅滩阻碍的危险.【点睛】本题考查了解直角三角形的知识,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.【解析】【分析】(1)A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.【详解】解:(1)直角坐标系如图所示.图书馆的坐标为B(-2,-2).(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.【点睛】本题考核知识点:平面直角坐标系.解题关键点:理解坐标的意义,利用坐标求出线段长度.23、D【解析】

根据函数图象中的数据可以求得小明从家去和返回时两种情况下离家600米对应的时间,本题得以解决.【详解】解:由图2可得,当2<t<5时,小明的速度为:(680-200)÷(5-2)=160m/min,设当小明离家600米时,所用的时间是t分钟,则200+160(t-2)=600时,t=4.5,80(16-t)=600时,t=8.5,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)甲:6;乙:6;(2)乙更稳定【解析】

(1)根据平均数=总数÷总份数,只要把甲乙的总成绩求出来,分别除以5即可;据此解答;(2)根据求出的方差进行解答即可.【详解】(1)两人的平均成绩分别为,.(2)方差分别是S2甲=[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=3.6S2乙=[(7-6)2+(5-6)2+(6-6)2+(5-6)2+(7-6)2]=0.8∵S2甲>S2乙,∴乙更稳定,【点睛】本题主要考查平均数的求法和方差问题,然后根据平均数判断解答实际问题.25、(1)0.25km/min;(2)(50≤x≤1);(3)甲、乙两人符合约定.【解析】

(1)由图像可知,甲没有休息,匀速行驶,到终点时,行驶了30km,用了120min,即可求得其速度;(2)首先根据图像可判定当甲走80min时,距A地20km,两人相遇,然后设乙休息后所行的路程y与x之间的函数关系为y=kx+b(k≠0),根据图像可得其经过(50,10)和(80,20)两点,列出二元一次方程组,解得即可,根据函数解析式,即可得出乙所用的时间,即得出自变量x的取值范围;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论