




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
切线长定理复习:*直线和圆有哪几种位置关系?*切线的判定:
1.d=r2.判定定理:经过半径的(外端)并且()于这条半径的直线是圆的切线。**切线的性质定理:圆的切线垂直于过切点的()
练习
1、如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,以C为圆心的圆与AB相切,则这个圆的半径是
cm。
2、如图,已知∠AOB=30°,M为OB上一点,且OM=5cm,以M为圆心,r为半径的圆与直线OA有怎样的位置关系?为什么?①r=2cm;②r=4cm;③r=2.5cm。
3、直线L和⊙O有公共点,则直线L与⊙O().A、相离;B、相切;C、相交;D、相切或相交。2.4相离相交相切DN认知准备问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?·O·O·OP·P·P·A问题2、经过圆外一点P,如何作已知⊙O的切线?
O。ABP认知准备问题2、经过圆外一点P,如何作已知⊙O的切线?过平面内的一点作圆的切线,可以作出几条切线?问题:一、切线长定义经过圆外一点做圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长。·OPAB定理形成切线与切线长的区别与联系:(1)切线是一条与圆相切的直线;(2)切线长是指切线上某一点与切点间的线段的长。若从⊙O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。APO。BPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=OB,OP=OP
∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。二、切线长定理APO。B几何语言:反思:切线长定理为证明线段相等、角相等提供了新的方法例1.PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中所有的相似三角形△AOC∽△BOC∽△POA∽△POB∽△PAC∽PBC(5)写出图中所有的等腰三角形△ABP△AOB(6)若PA=4、PD=2,求半径OA(2)写出图中与∠OAC相等的角∠OAC=∠OBC=∠APC=∠BPCo.o.o..o外接圆圆心(外心):三角形三边垂直平分线的交点。到三角形三个顶点的距离相等。外切圆的半径:交点到三角形任意一个定点的距离。三角形外接圆三角形内切圆.o内切圆圆心(内心):三角形三个内角平分线的交点。到三角形三边的距离相等。内切圆的半径:交点到三角形任意一边的垂直距离。AABBCC例2已知:如图,△ABC的内切圆⊙O与BC、CA、AB分别相交于点D、E、F,且AB=9厘米,BC=14厘米,CA=13厘米,求AF、BD、CE的长。AECDBFO
例3.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.(2)如果∠P=46°,求∠COD的度数C
·OPBDAE小结贝:(1)切效线长纸定理醒。(2)连
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论