版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的一段图象如图所示,则函数的解析式为()A.y=2sin B.y=C.y=2sin D.y=2sin2.函数的零点所在区间为()A.(0,) B.(,)C.(,1) D.(1,2)3.和函数是同一函数的是()A. B.C. D.4.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件5.定义运算,则函数的部分图象大致是()A. B.C. D.6.下列函数中,既是奇函数又在区间上单调递增的是()A. B.C. D.7.已知函数,方程在有两个解,记,则下列说法正确的是()A.函数的值域是B.若,的增区间为和C.若,则D.函数的最大值为8.设的两根是,则A. B.C. D.9.已知正实数满足,则的最小值是()A B.C. D.10.若直线过点,,则此直线的倾斜角是()A.30° B.45°C.60° D.90°二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.总体由编号为,,,,的个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第行的第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为__________12.已知向量,,且,则__________.13.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:14.cos(-225°)=______15.在直角坐标系中,直线的倾斜角________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)试判断函数在区间上的单调性,并用函数单调性定义证明;(2)对任意时,都成立,求实数的取值范围17.已知函数(1)当时,在上恒成立,求的取值范围;(2)当时,解关于的不等式18.设是函数定义域内的一个子集,若存在,使得成立,则称是的一个“弱不动点”,也称在区间上存在“弱不动点”.设函数,(1)若,求函数的“弱不动点”;(2)若函数在上不存在“弱不动点”,求实数的取值范围19.已知函数.(1)求函数的定义域;(2)若实数,且,求的取值范围.20.如图,公路围成的是一块顶角为的角形耕地,其中,在该块土地中处有一小型建筑,经测量,它到公路的距离分别为,现要过点修建一条直线公路,将三条公路围成的区域建成一个工业园.(1)以为坐标原点建立适当的平面直角坐标系,并求出点的坐标;(2)三条公路围成的工业园区的面积恰为,求公路所在直线方程.21.芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t50110250Q150108150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q与上市时间t的变化关系:Q=at+b,Q=at2+bt+c,Q=a·bt,Q=alogbt,并说明理由;(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】先从图象中看出A,再求出最小正周期,求出ω,代入特殊值后结合φ范围求出φ的值,得到答案.【详解】由图象可知A=2,因为-==,所以T=,ω=2.当x=-时,2sin=2,即sin=1,又|φ|<,解得φ=.故函数的解析式为y=2sin.故选:C2、B【解析】结合函数的单调性以及零点的存在性定理求得正确答案.【详解】在上递减,所以,在上递增,所以,是定义在上的减函数,,所以函数的零点在区间.故选:B3、D【解析】根据相同的函数定义域,对应法则,值域都相同可知ABC不符合要求,D满足.【详解】的定义域为,值域为,对于A,与的对应法则不同,故不是同一个函数;对于B,的值域为,故不是同一个函数;对于C,的定义域为,故不是同一个函数;对于D,,故与是同一个函数.故选:D4、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件5、B【解析】根据运算得到函数解析式作图判断.【详解】,其图象如图所示:故选:B6、D【解析】利用是偶函数判定选项A错误;利用判定选项B错误;利用的定义域判定选项C错误;利用奇偶性的定义证明是奇函数,再通过基本函数的单调性判定的单调性,进而判定选项D正确.【详解】对于A:是偶函数,即选项A错误;对于B:是奇函数,但,所以在区间上不单调递增,即选项B错误;对于C:是奇函数,但的定义域为,,即选项C错误;对于D:因为,,有,即奇函数;因为在区间上单调递增,在区间上单调递增,所以在区间上单调递增,即选项D正确.故选:D.7、B【解析】利用函数的单调性判断AB选项;解方程求出从而判断C选项;举反例判断D选项.【详解】对于A选项,当时,,,为偶函数,当时,,任取,且,,若,则;若,则,即函数在区间上单调递减,在区间上单调递增,图像如图示:结合偶函数的性质可知,的值域是,故A选项错误;对于B选项,,当时,,,则为偶函数,当时,,易知函数在区间上单调递减,当时,,易知函数在区间上单调递增,图像如图示:根据偶函数的性质可知,函数的增区间为和,故B选项正确;对于C选项,若,图像如图示:若,则,与方程在有两个解矛盾,故C选项错误;对于D选项,若时,,图像如图所示:当时,则与方程在有两个解矛盾,进而函数的最大值为4错误,故D选项错误;故选:B8、D【解析】详解】解得或或即,所以故选D9、B【解析】根据题中条件,得到,展开后根据基本不等式,即可得出结果.【详解】因为正实数满足,所以,当且仅当,即时,等号成立.故选:B.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10、A【解析】根据两点求解直线的斜率,然后利用斜率求解倾斜角.【详解】因为直线过点,,所以直线的斜率为;所以直线的倾斜角是30°,故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据随机数表,依次进行选择即可得到结论.【详解】按照随机数表的读法所得样本编号依次为23,21,15,可知第3个个体的编号为15.故答案为:15.12、【解析】根据共线向量的坐标表示,列出方程,即可求解.【详解】由题意,向量,,因为,可得,解得.故答案为:.13、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.14、【解析】直接利用诱导公式求知【详解】【点睛】本题考查利用诱导公式求知,一般按照以下几个步骤:负化正,大化小,划到锐角为终了同时在转化时需注意“奇变偶不变,符号看象限.”15、##30°【解析】由直线方程得斜率,由斜率得倾斜角【详解】试题分析:直线化成,可知,而,故故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)在上单调递减,证明见解析;(2).【解析】(1)利用单调性定义:设并证明的大小关系即可.(2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即可求的取值范围【详解】(1)函数在区间上单调递减,以下证明:设,∵,∴,,,∴,∴在区间上单调递减;(2)由(2)可知在上单调减函数,∴当时,取得最小值,即,对任意时,都成立,只需成立,∴,解得:17、(1)(2)答案不唯一,具体见解析【解析】(1)利用参变量分离法可求得实数的取值范围;(2)分、、、四种情况讨论,结合二次不等式的解法可求得原不等式的解集.【小问1详解】由题意得,当时,在上恒成立,即当时,在上恒成立,不等式可变为,令,,则,故,解得【小问2详解】当时,解不等式,即当时,解不等式,不等式可变为,若时,不等式可变为,可得;若时,不等式可变为,当时,,可得或;当时,,即,可得且;当时,,可得或综上:当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是;当时,原不等式的解集是18、(1)0(2)【解析】(1)解方程可得;(2)由方程在上无解,转化为求函数的取值范围,利用换元法求解取值范围,同时注意对数的真数大于0对参数范围有限制,从而可得结论【小问1详解】当时,,由题意得,即,即,得,即,所以函数的“弱不动点”为0【小问2详解】由已知在上无解,即在上无解,令,得在上无解,即在上无解记,则在上单调递减,故,所以,或又在上恒成立,故在上恒成立,即在上恒成立,记,则在上单调递减,故,所以,综上,实数的取值范围是19、(1);(2).【解析】(1)要使有意义,则即,要使有意义,则即求交集即可求函数的定义域;(2)实数,且,所以即可得出的取值范围.试题解析:(1)要使有意义,则即要使有意义,则即所以的定义域.(2)由(1)可得:即所以,故的取值范围是20、(1);(2).【解析】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立平面直角坐标系.根据条件求出直线的方程,设出点坐标,代点到直线的距离公式即可求出所求;(2)由(1)及题意设出直线的方程后,即可求得点的横坐标,与点的纵坐标,由求得后,即可求解.【详解】(1)以为坐标原点,所在直线为轴,过点且垂直于的直线为轴,建立如图所示的平面直角坐标系由题意可设点,且直线的斜率为,并经过点,故直线的方程为:,又因点到的距离为,所以,解得或(舍去)所以点坐标为.(2)由题意可知直线的斜率一定存在,故设其直线方程为:,与直线的方程:,联立后解得:,对直线方程:,令,得,所以,解得,所以直线方程为:,即:.【点睛】本题以直线方程的相关知识为背景,旨在考查学生分析和解决问题的能力,属于中档题.21、(1)选用二次函数Q=at2+bt+c进行描述,理由见解析;(2)150(天),100(元/10kg).【解析】(1)由所提供的数据和函数的单调性得出应选函数,再代入数据可得芦荟种植成本Q与上市时间t的变化关系的函数.(2)由二次函数的性质可以得出芦荟种植成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度石油化工设备采购合同补充协议范本3篇
- 二零二五年度vi设计创意制作合同范本2篇
- 二零二五版环境安全风险评估与治理合同3篇
- 合同管理在2025年度招投标中的合规性分析3篇
- 二零二五版企业内部技术人员挂靠合作合同范本3篇
- 二零二五年度高压电气设备采购及安装合同2篇
- 二零二五版宝钢集团劳动合同员工加班费及休息日工作安排3篇
- 二零二五年度车辆质押担保合同样本2篇
- 二零二五版公路货运合同道路运输许可证管理与审查规范3篇
- 二零二五年度绿色环保房地产商品房买卖合同书3篇
- 10日益重要的国际组织第三课时中国与国际组织(教学设计)2023-2024学年统编版道德与法治六年级下册
- Unit 1 同步练习人教版2024七年级英语上册
- 工程管理重大风险应对方案
- 直播带货助农现状及发展对策研究-以抖音直播为例(开题)
- 腰椎间盘突出疑难病例讨论
- 《光伏发电工程工程量清单计价规范》
- 2023-2024学年度人教版四年级语文上册寒假作业
- (完整版)保证药品信息来源合法、真实、安全的管理措施、情况说明及相关证明
- 营销专员绩效考核指标
- 陕西麟游风电吊装方案专家论证版
- 供应商审核培训教程
评论
0/150
提交评论