




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.学校准备从甲、乙、丙、丁四名同学中选择一名同学参加市里举办的“汉字听写大赛”,下表是四位同学几次测试成绩的平均分和方差的统计结果,如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是()甲乙丙丁平均分94989896方差11.211.8A.甲 B.乙 C.丙 D.丁2.如图,把矩形ABCD沿对角线BD折叠,重叠部分为△EBD,则下列说法可能错误的是()A.AB=CD B.∠BAE=∠DCEC.EB=ED D.∠ABE=30°3.下列判定中,正确的个数有()①一组对边平行,一组对边相等的四边形是平行四边形;②对角线互相平分且相等的四边形是矩形;③对角线互相垂直的四边形是菱形;④对角线互相垂直平分且相等的四边形是正方形,A.1个 B.2个 C.3个 D.4个4.如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO5.下列式子中,属于分式的是()A.12 B.2x C.59-x6.定义:在同一平面内画两条相交、有公共原点的数轴x轴和y轴,交角a≠90°,这样就在平面上建立了一个斜角坐标系,其中w叫做坐标角,对于坐标平面内任意一点P,过P作y轴和x轴的平行线,与x轴、y轴相交的点的坐标分别是a和b,则称点P的斜角坐标为(a,b).如图,w=60°,点P的斜角坐标是(1,2),过点P作x轴和y轴的垂线,垂足分别为M、N,则四边形OMPN的面积是(
)A.1336 B.13387.若a+c=b,那么方程ax2+bx+c=0(a≠0)必有一根是()A.1B.﹣1C.±1D.08.若,则下列式子中错误的是()A. B. C. D.9.式子,,,,中是分式的有A.1个 B.2个 C.3个 D.4个10.一个射手连续射靶10次,其中3次射中10环,3次射中9环,4次射中8环.则该射手射中环数的中位数和众数分别为()A.8,9 B.9,8 C.8.5,8 D.8.5,911.若分式有意义,则x应满足的条件是()A. B. C. D.12.已知二次根式的值为3,那么的值是()A.3 B.9 C.-3 D.3或-3二、填空题(每题4分,共24分)13.某商场利用“五一”开展促销活动:一次性购买某品牌服装件,每件仅售元,如果超过件,则超过部分可享受折优惠,顾客所付款(元)与所购服装件之间的函数解析式为__________.14.把长为20,宽为a的长方形纸片(10<a<20),如图那样折一下,剪下一个边长等于长方形宽度的正方形(称为第一次操作);再把剩下的长方形如图那样折一下,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n次操作后,剩下的长方形为正方形,则操作停止.当n=3时,a的值为________.15.如图,在平面直角坐标系中,AD∥BC,AD=5,B(-3,0),C(9,0),点E是BC的中点,点P是线段BC上一动点,当PB=________时,以点P、A、D、E为顶点的四边形是平行四边形.16.分解因式:2x2-8x+8=__________.17.分解因式:18.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确结论的序号是________________三、解答题(共78分)19.(8分)如图,在矩形ABCD中,点E、F在边AD上,AF=DE,连接BF、CE.(1)求证:∠CBF=∠BCE;(2)若点G、M、N在线段BF、BC、CE上,且FG=MN=CN.求证:MG=NF;(3)在(2)的条件下,当∠MNC=2∠BMG时,四边形FGMN是什么图形,证明你的结论.20.(8分)如图,在△ABC中,∠ACB=90°,AC=BC,点E是BC上一点(不与点B,C重合),点M是AE上一点(不与点A,E重合),连接并延长CM交AB于点G,将线段CM绕点C按顺时针方向旋转90°,得到线段CN,射线BN分别交AE的延长线和GC的延长线于D,F.(1)求证:△ACM≌△BCN;(2)求∠BDA的度数;(3)若∠EAC=15°,∠ACM=60°,AC=+1,求线段AM的长.21.(8分)计算:(1)(2)已知,试求以a、b、c为三边的三角形的面积.22.(10分)下表是随机抽取的某公司部分员工的月收入资料.(1)请计算样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;并指出谁的推断比较科学合理,能直实地反映公司全体员工月收入水平。23.(10分)解不等式组:,并把解集在数轴上表示出来.24.(10分)某公司把一批货物运往外地,有两种运输方案可供选择.方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:(2)如何选择运输方案,运输总费用比较节省?25.(12分)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点p,取GH的中点Q,连接PQ,则△GPQ的周长最小值是__26.目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型乙型(1)如何进货,进货款恰好为元?(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?
参考答案一、选择题(每题4分,共48分)1、C【解析】
先比较平均数得到乙同学和丙同学成绩较好,然后比较方差得到丙同学的状态稳定,于是可决定选丙同学去参赛.【详解】乙、丙同学的平均数比甲、丁同学的平均数大,应从乙和丙同学中选,丙同学的方差比乙同学的小,丙同学的成绩较好且状态稳定,应选的是丙同学;故选:.【点睛】主要考查平均数和方差,方差可以反映数据的波动性.方差越小,越稳定.2、D【解析】
根据ABCD为矩形,所以∠BAE=∠DCE,AB=CD,再由对顶角相等可得∠AEB=∠CED,所以△AEB≌△CED,就可以得出BE=DE,由此判断即可.【详解】∵四边形ABCD为矩形∴∠BAE=∠DCE,AB=CD,故A.B选项正确;在△AEB和△CED中,∠BAE=∠DCE∠AEB=∠CEDAB=CD∴△AEB≌△CED(AAS),∴BE=DE,故C正确;∵得不出∠ABE=∠EBD,∴∠ABE不一定等于30°,故D错误.故选:D.【点睛】此题考查翻折变换(折叠问题),解题关键在于利用全等三角形的性质进行解答.3、B【解析】
利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【详解】解:①一组对边平行,一组对边相等的四边形,可能是等腰梯形;故①错误;②对角线互相平分且相等的四边形是矩形;故②正确;③对角线互相垂直平分的四边形是菱形;故③错误;④对角线互相垂直平分且相等的四边形是正方形,故④正确;综上所述:②④正确,正确的个数有2个.故选:.【点睛】本题考查了矩形的判定、平行四边形的判定、菱形的判定及正方形的判定,解题的关键是能够熟练掌握有关的判定定理,难度不大.4、D【解析】A选项:∵AD∥BC,
∴∠ADB=∠CBD,
在△BOC和△DOA中,∴△BOC≌△DOA(AAS),
∴BO=DO,
∴四边形ABCD是平行四边形,正确,故本选项错误;
B选项:∵∠ABC=∠ADC,AD∥BC,
∴∠ADC+∠DCB=180°,
∴∠ABC+∠BCD=180°,
∴AB∥DC,
∴四边形ABCD是平行四边形,正确,故本选项错误;
C选项:∵AB=CD,AD=BC,
∴四边形ABCD是平行四边形,正确,故本选项错误;
D选项:由∠ABD=∠ADB,∠BAO=∠DCO,
无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选D.【点睛】平行四边形的判定有:①两组对边分别相等的四边形是平行四边形,②两组对边分别平行的四边形是平行四边形③两组对角分别相等的四边形是平行四边形④对角线互相平分的四边形是平行四边形,⑤有一组对边平行且相等的四边形是平行四边形.5、C【解析】
根据分式的定义进行解答即可,即分母中含有未知数的式子叫分式.【详解】解:A、12B、2x的不含分母,因此它们是整式,而不是分式.故本选项错误;C、59-xD、x3故选:C.【点睛】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.6、B【解析】
添加辅助线,将四边形OMPN转化为直角三角形和平行四边形,因此过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,易证四边形OAPB是平行四边形,利用平行四边形的性质,可知OB=PA,OA=PB,由点P的斜角坐标就可求出PB、PA的长,再利用解直角三角形分别求出PN,NB,PM,AM的长,然后根据S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB,利用三角形的面积公式和平行四边形的面积公式,就可求出结果.【详解】解:过点P作PA∥y轴,交x轴于点A,过点P作PB∥x轴交y轴于点B,∴四边形OAPB是平行四边形,∠NBP=w=∠PAM=60°,
∴OB=PA,OA=PB∵点P的斜角坐标为(1,2),∴OA=1,OB=2,∴PB=1,PA=2,∵PM⊥x轴,PN⊥y轴,∴∠PMA=∠PNB=90°,在Rt△PAM中,∠PAM=60°,则∠APM=30°,∴PA=2AM=2,即AM=1PM=PAsin60°∴PM=3∴S△PAM=1在Rt△PBN中,∠PBN=60°,则∠BPN=30°,∴PB=2BN=1,即BN=1PN=PBsin60°∴PN=3∴S△PBN=12PN⋅BN=∵S四边形OMPN=S△PAM+S△PBN+S平行四边形OAPB=故答案为:B【点睛】本题考查了新概念斜角坐标系、图形与坐标、含30°角直角三角形的性质、三角函数、平行四边形的判定与性质、三角形面积与平行四边形面积的计算等知识,熟练掌握新概念斜角坐标系与含30°角直角三角形的性质是解题的关键.7、B【解析】解:根据题意:当x=﹣1时,方程左边=a﹣b+c,而a+c=b,即a﹣b+c=0,所以当x=﹣1时,方程ax2+bx+c=0成立.故x=﹣1是方程的一个根.故选B.8、C【解析】
A:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.B:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,据此判断即可.C:不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,据此判断即可.D:不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,据此判断即可.【详解】∵x>y,∴x+2>y+2,∴选项A不符合题意;∵x>y,∴x-2>y-2,∴选项B不符合题意;∵x>y,∴−2x<−2y,∴选项C符合题意;∵x>y,∴,∴选项D不符合题意,故选C.【点睛】此题考查不等式的性质,解题关键在于掌握其性质.9、B【解析】
,,,,中分式有,两个,其它代数式分母都不含有字母,故都不是分式.故选B.10、B【解析】
根据中位数和众数的定义求解.把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:这组数据中出现次数最多的一个数是8,所以这组数据的众数是8;这10个数按大小顺序排列后中间两个数是1和1,所以这组数据的中位数是1.
故选:B.【点睛】本题考查众数和中位数.掌握中位数和众数的定义是关键.11、A【解析】
本题主要考查分式有意义的条件:分母不能为0【详解】解:∵x-2≠0,
∴x≠2,
故选:A.【点睛】本题考查的是分式有意义的条件,当分母不为0时,分式有意义.12、D【解析】试题分析:∵,∴.故选D.考点:二次根式的性质.二、填空题(每题4分,共24分)13、【解析】
因为所购买的件数x≥3,所以顾客所付款y分成两部分,一部分是3×80=240,另一部分是(x-3)×80×0.8,让它们相加即可.【详解】解:∵x≥3,∴y=3×80+(x-3)×80×0.8=64x+48(x≥3).故答案是:.【点睛】此题主要考查利用一次函数解决实际问题,找到所求量的等量关系是解决问题的关键.14、12或2【解析】
根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当10<a<1时,矩形的长为1,宽为a,所以第一次操作时所得正方形的边长为a,剩下的矩形相邻的两边分别为1-a,a.由1-a<a可知,第二次操作时所得正方形的边长为1-a,剩下的矩形相邻的两边分别为1-a,a-(1-a)=2a-1.由于(1-a)-(2a-1)=40-3a,所以(1-a)与(2a-1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1-a>2a-1;②1-a<2a-1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a的值.【详解】由题意,可知当10<a<1时,第一次操作后剩下的矩形的长为a,宽为1-a,所以第二次操作时正方形的边长为1-a,第二次操作以后剩下的矩形的两边分别为1-a,2a-1.此时,分两种情况:①如果1-a>2a-1,即a<,那么第三次操作时正方形的边长为2a-1.∵经过第三次操作后所得的矩形是正方形,∴矩形的宽等于1-a,即2a-1=(1-a)-(2a-1),解得a=12;②如果1-a<2a-1,即a>,那么第三次操作时正方形的边长为1-a.则1-a=(2a-1)-(1-a),解得a=2.故答案为:12或2.15、1或11【解析】
根据题意求得AD的值,再利用平行四边形性质分类讨论,即可解决问题.【详解】∵B(-3,0),C(9,0)∴BC=12∵点E是BC的中点∴BE=CE=6∵AD∥BC∴AD=5∴当PE=5时,以点P、A、D、E为顶点的四边形是平行四边形.分两种情况:当点P在点E左边时,PB=BE-PE=6-5=1;②当点P在点E右边时,PB=BE+PE=6+5=11综上所述,当PB的长为1或11时,以点P、A、D、E为顶点的四边形是平行四边形.【点睛】本题考查了平行四边形的性质,注意分类讨论思想的运用.16、2(x-2)2【解析】
先运用提公因式法,再运用完全平方公式.【详解】:2x2-8x+8=.故答案为2(x-2)2.【点睛】本题考核知识点:因式分解.解题关键点:熟练掌握分解因式的基本方法.17、【解析】试题分析:首先提取公因式b,然后根据完全平方公式进行因式分解.原式==考点:(1)因式分解;(2)提取公因式法;(3)完全平方公式18、①②④【解析】
根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC-BE=CD-DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a-)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.【点睛】本题考查正方形的性质,全等三角形的判定与性质,熟悉掌握是解题关键.三、解答题(共78分)19、(1)见解析;(2)见解析;(3)四边形FGMN是矩形,见解析【解析】
(1)由“SAS”可证△ABF≌△DCE,可得∠ABF=∠DCE,可得结论;(2)通过证明四边形FGMN是平行四边形,可得MG=NF;(3)过点N作NH⊥MC于点H,由等腰三角形的性质可证∠BMG=∠MNH,可证∠GMN=90°,即可得四边形FGMN是矩形.【详解】证明:(1)∵四边形ABCD是矩形∴AB=CD,∠A=∠D=90°,且AF=DE∴△ABF≌△DCE(SAS)∴∠ABF=∠DCE,且∠ABC=∠DCB=90°∴∠FBC=∠ECB(2)∵FG=MN=CN∴∠NMC=∠NCM∴∠NMC=∠FBC∴MN∥BF,且FG=MN∴四边形FGMN是平行四边形∴MG=NF(3)四边形FGMN是矩形理由如下:如图,过点N作NH⊥MC于点H,∵MN=NC,NH⊥MC∴∠MNH=∠CNH=∠MNC,NH⊥MC∴∠MNH+∠NMH=90°∵∠MNC=2∠BMG,∠MNH=∠CNH=∠MNC∴∠BMG=∠MNH,∴∠BMG+∠NMH=90°∴∠GMN=90°∴四边形FGMN是矩形【点睛】本题考查了矩形的性质和判定,全等三角形的判定和性质,平行四边形的判定,证明∠BMG=∠MNH是本题的关键.20、(1)见解析;(2)∠BDA=90°;(3)AM=.【解析】
(1)根据题意可知∠ACM=∠BCN,再利用SAS即可证明(2)根据(1)可求出∠ACE=∠BDE=90°,即可解答(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.可知AQ=QM=2a,QH=a,再求出a的值,利用勾股定理即可解答【详解】(1)∵∠ACB=90°,∠MCN=90°,∴∠ACM=∠BCN,在△MAC和△NBC中,∴△MAC≌△NBC(SAS).(2)∵△MAC≌△NBC,∴∠NBC=∠MAC∵∠AEC=∠BED,∴∠ACE=∠BDE=90°,∴∠BDA=90°.(3)作MH⊥AC交AC于H.在AC上取一点,使得AQ=MQ,设EH=a.∵AQ=QM,∴∠QAE=∠AMQ=15°,∴∠EQH=30°,∴AQ=QM=2a,QH=a,∵∠ECH=60°,∴CH=a,∵AC=+1,∴2a+a+a=+1,∴a=,∵AM==(+)a=.【点睛】此题考查了三角形全等的性质和判定,勾股定理,解题关键在于先利用SAS判定三角形全等21、(1);(2)以a、b、c为三边的三角形的面积为1.【解析】
(1)先根据二次根式的乘除法则和完全平方公式计算,然后化简后合并即可;(2)利用非负数的性质得到a−1=0,b−2=0,c−=0,解得a=1,b=2,c=,利用勾股定理的逆定理得到以a、b、c为三边的三角形为直角三角形,其中c为斜边,然后根据三角形面积公式计算.【详解】解:(1)原式;(2)由题意得:,,,,,,,,,∴以a、b、c为三边的三角形是直角三角形.∴它的面积是.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了勾股定理的逆定理.22、(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【解析】
(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;
(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入,乙推断比较科学合理.【详解】解:(1)样本的平均数为:=6150元;这组数据共有26个,第13、14个数据分别是3000、3400,所以样本的中位数为:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.故答案为:(1)平均数:6150元;中位数:3200元;(2)甲:由样本平均数为6150元,估计全体员工的月平均收入大约为6150元;乙:由样本中位数为3200元,估计全体大约有一半的员工月收入超过3200元,有一半员工月收入不足3200元,乙推断比较科学合理.【点睛】本题考查计算平均数和中位数,并用中位数和平均数说明具体问题.23、﹣1<x≤3【解析】
分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】,解不等式①,得x>﹣1,解不等式②,得x≤3,所以,原不等式组的解集为﹣1<x≤3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解答本题的关键.24、(1)y1=4x+400,y2=2x+820;(2)当运输路程x不超过210千米时,使用方式一最节省费用;当运输路程x超过210千
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业合作经济园区土地使用协议
- 生态农场共建合作协议
- 2025年工业互联网平台数据库异构融合技术专利分析报告
- 2025年中国彩色电视机市场前景预测及投资规划研究报告
- 新零售环境下实体书店转型成功案例与策略探讨报告
- 融媒体时代2025年广播媒体与互联网企业的合作模式研究与分析报告
- 2025年海上风电技术创新与产业规模化发展技术风险研究报告
- 房地产市场库存去化压力与2025年营销模式创新研究报告
- 济祁高速永城至利辛安徽段路基工程冬季安全施工方案
- 2025-2030年中国生鲜夹行业深度研究分析报告
- 2025辅警考试题《公安基础知识》综合能力试题库
- 2025年小学科学课程标准考试测试题及答案
- 普及心理健康
- 2025届马鞍山市第二中学物理高二下期末监测试题含解析
- 心理健康教育:家长心理健康讲座
- 2026版高三一轮总复习(数学) 第二章 重点培优课1 函数性质的综合应用 课件
- QC品质工程图模板
- 脊髓损伤的护理课件
- 海尔冰箱BCD-210DCX使用说明书
- 生物膜技术革新:MBBR与IFAS工艺中功能性生物膜挂膜驯化的深入探讨
- 全国工会系统经审业务技能大赛知识题(附答案)
评论
0/150
提交评论