版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1MATLAB优化工具箱--线性规划-非线性规划2例题建模典型的优化问题三大要素:目标:种植A,B两种作物获得最大利润决策:安排种植A,B两种作物各所少亩约束:肥料限制;种植土地面积限制建立模型max6x1+4x2s.t.2x1+5x2
≤1004x1+2x2
≤1203Matlab优化工具箱线性规划:linprog非线性规划:fminbnd,fminsearch,fmincon2023/5/184求解下列形式的线性规划模型:Matlab求解线性规划模型
函数linprog2023/5/185linprog语法:x=linprog(f,A,b,Aeq,beq)x=linprog(f,A,b,Aeq,beq,lb,ub)x=linprog(f,A,b,Aeq,beq,lb,ub,x0)x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval]=linprog(...)[x,fval,exitflag]=linprog(...)[x,fval,exitflag,output]=linprog(...)[x,fval,exitflag,output,lambda]=linprog(...)6linprog输入参数说明:f,A,b,Aeq,beqlb,ub边界设置说明:如果x(i)无边界,则lb(i)=-inf,ub(i)=inf7输出参数说明:x
决策变量取值fval
目标函数最优值exitflag
>0
成功找到最优解
0
达到最大迭代次数也没有找到最优解
<0
该线性规划问题不可行或者linprog计算失败linprog8例题的求解程序模型:max6x1+4x2s.t.2x1+5x2
≤1004x1+2x2
≤120Matlab求解程序:A=[25;42];b=[100120];f=-[64];[optx,funvalue,exitflag]=linprog(f,A,b,[],[],[00],[inf,inf])9程序运行结果输出:Optimizationterminatedsuccessfully.optx=25.000010.0000funvalue=
-190.0000exitflag=
110解释得出实际问题的解
当分别种植A、B两种作物为25亩、10亩时,预计共获得利润190(百元)。2023/5/1811fmincon函数求解形如下面的有约束非线性规划模型一般形式:Matlab求解有约束非线性最小化1.约束中可以有等式约束2.可以含线性、非线性约束均可2023/5/1812输入参数语法:x=fmincon(fun,x0,A,b)x=fmincon(fun,x0,A,b,Aeq,beq)x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub)x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)x=fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options,P1,P2,...)[x,fval,exitflag,output,lambda]=fmincon(fun,x0,...)2023/5/1813输入参数的几点说明模型中如果没有A,b,Aeq,beq,lb,ub的限制,则以空矩阵[]作为参数传入;nonlcon:如果包含非线性等式或不等式约束,则将这些函数
编写为一个Matlab函数,nonlcon就是定义这些函数的程序文件名;不等式约束c(x)<=0等式约束ceq(x)=0.如果nonlcon=‘mycon’;则myfun.m定义如下function[c,ceq]=mycon(x)c=...
%计算非线性不等式约束在点x处的函数值ceq=...
%计算机非线性等式约束在点x处的函数值
14fmincon示例求解步骤:(1)编写目标函数文件(这里文件名用myobjfun2.m)(2)编写约束条件函数文件(mymodelcons.m)(3)编写调用fmincon主程序(mymain2.m)15fmincon示例程序functionr=myobjfun1(x)%目标函数值计算,并返回r=2*x(1)^2+3*x(2)^2+4*x(3)^2;文件myobjfun2.mfunction[C,CEQ]=mymodelcons(x)C(1)=x(1)^2+x(2)^2-2*x(3)-900;%<=0CEQ(1)=x(1)+x(2)+x(3)-1000;%=0文件mymodelcons.m16fun='myobjfun2';%目标函数文件名字符串x0=[001000];%初始点,注意满足等式约束%基本约束条件初始化A=[];b=[];Aeq=[];beq=[];lb=[000];ub=[inf,inf,inf];nonlcon='mymodelcons';%约束条件文件名%调用fmincon求解[x,fval,exitflag]=fmincon(fun,x0,A,b,Aeq,beq,...
lb,ub,nonlcon)
文件myobjfun2.m17学习小结最优化问题建模的关键是先要确定三要素,再转化为数学表达式(数学模型)。学习中既要初步掌握最优化问题的建模步骤,也要善于运用Matlab的优化工具箱求解优化模型。有些模型可以采用多个Matlab函数求解,可以比较结果,加深认识。18思考题一幢楼房的后面是一个很大的花园。在花园中紧靠着楼房建有一个温室,温室高
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 磁现象与磁场教学课件
- 短期融资课件
- 盾构机安全培训
- 2026年语言教学及对外汉语教学测试题库
- 2026年机械工程师考试复习题机械原理与制造工艺
- 2026年导游资格考试题旅游知识与导游技能训练
- 2026年语言学者成语词汇与语言解析题库
- 2026年计算机编程语言与算法练习题库
- 2026年企业内部员工培训试题集职业素养与团队合作能力提升
- 2026年钢琴演奏基础与技巧练习集
- 金风1500kW风机常见故障处理指导手册
- 《大型立式储罐的结构分析和安全评价》
- 某部自动售货机服务 投标方案(技术标 )
- GA/T 1466.3-2023智能手机型移动警务终端第3部分:检测方法
- JT-T 1495-2024 公路水运危险性较大工程专项施工方案编制审查规程
- 太阳能辐射预测与建模
- 23S519 小型排水构筑物(带书签)
- 涉诈风险账户审查表
- 私募基金管理人实际控制人变更专项法律意见书
- MT/T 556-1996液压支架设计规范
- GB/T 35452-2017再生粘合软质聚氨酯泡沫塑料
评论
0/150
提交评论