




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长望浏宁四县2023届高三下学期5月中旬仿真考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知展开式的二项式系数和与展开式中常数项相等,则项系数为()A.10 B.32 C.40 D.802.在棱长为2的正方体ABCD−A1B1C1D1中,P为A1D1的中点,若三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为()A.12 B. C. D.103.已知集合,,则=()A. B. C. D.4.在中,角、、的对边分别为、、,若,,,则()A. B. C. D.5.已知抛物线的焦点为,准线为,是上一点,是直线与抛物线的一个交点,若,则()A. B.3 C. D.26.函数的图象如图所示,为了得到的图象,可将的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.国务院发布《关于进一步调整优化结构、提高教育经费使用效益的意见》中提出,要优先落实教育投入.某研究机构统计了年至年国家财政性教育经费投入情况及其在中的占比数据,并将其绘制成下表,由下表可知下列叙述错误的是()A.随着文化教育重视程度的不断提高,国在财政性教育经费的支出持续增长B.年以来,国家财政性教育经费的支出占比例持续年保持在以上C.从年至年,中国的总值最少增加万亿D.从年到年,国家财政性教育经费的支出增长最多的年份是年8.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为()A. B. C. D.9.设,,则()A. B.C. D.10.在平行四边形中,若则()A. B. C. D.11.已知函数,当时,的取值范围为,则实数m的取值范围是()A. B. C. D.12.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.“”是“”的__________条件.(填写“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”之一)14.某次足球比赛中,,,,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率—0.40.30.8获胜概率0.6—0.70.5获胜概率0.70.3—0.3获胜概率0.20.50.7—则队获得冠军的概率为______.15.已知双曲线(a>0,b>0)的两个焦点为、,点P是第一象限内双曲线上的点,且,tan∠PF2F1=﹣2,则双曲线的离心率为_____.16.已知,满足,则的展开式中的系数为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,函数.(Ⅰ)若在区间上单调递增,求的值;(Ⅱ)若恒成立,求的最大值.(参考数据:)18.(12分)已知四棱锥中,底面为等腰梯形,,,,丄底面.(1)证明:平面平面;(2)过的平面交于点,若平面把四棱锥分成体积相等的两部分,求二面角的余弦值.19.(12分)已知函数.(1)当时.①求函数在处的切线方程;②定义其中,求;(2)当时,设,(为自然对数的底数),若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.20.(12分)如图,在四棱锥中,底面是菱形,∠,是边长为2的正三角形,,为线段的中点.(1)求证:平面平面;(2)若为线段上一点,当二面角的余弦值为时,求三棱锥的体积.21.(12分)已知函数.(Ⅰ)当时,求函数在上的值域;(Ⅱ)若函数在上单调递减,求实数的取值范围.22.(10分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.2、C【解析】
取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,此直三棱柱和三棱锥P−ABC有相同的外接球,求出等腰三角形的外接圆半径,然后利用勾股定理可求出外接球的半径【详解】如图,取B1C1的中点Q,连接PQ,BQ,CQ,PD,则三棱柱BCQ−ADP为直三棱柱,所以该直三棱柱的六个顶点都在球O的球面上,的外接圆直径为,球O的半径R满足,所以球O的表面积S=4πR2=,故选:C.【点睛】此题考查三棱锥的外接球半径与棱长的关系,及球的表面积公式,解题时要注意审题,注意空间思维能力的培养,属于中档题.3、C【解析】
计算,,再计算交集得到答案.【详解】,,故.故选:.【点睛】本题考查了交集运算,意在考查学生的计算能力.4、B【解析】
利用两角差的正弦公式和边角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【详解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.5、D【解析】
根据抛物线的定义求得,由此求得的长.【详解】过作,垂足为,设与轴的交点为.根据抛物线的定义可知.由于,所以,所以,所以,所以.故选:D【点睛】本小题主要考查抛物线的定义,考查数形结合的数学思想方法,属于基础题.6、C【解析】
根据正弦型函数的图象得到,结合图像变换知识得到答案.【详解】由图象知:,∴.又时函数值最大,所以.又,∴,从而,,只需将的图象向左平移个单位即可得到的图象,故选C.【点睛】已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求,一般用最高点或最低点求.7、C【解析】
观察图表,判断四个选项是否正确.【详解】由表易知、、项均正确,年中国为万亿元,年中国为万亿元,则从年至年,中国的总值大约增加万亿,故C项错误.【点睛】本题考查统计图表,正确认识图表是解题基础.8、D【解析】
根据中点在轴上,设出两点的坐标,,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.9、D【解析】
由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.10、C【解析】
由,,利用平面向量的数量积运算,先求得利用平行四边形的性质可得结果.【详解】如图所示,
平行四边形中,,
,,,
因为,
所以
,
,所以,故选C.【点睛】本题主要考查向量的几何运算以及平面向量数量积的运算法则,属于中档题.向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).11、C【解析】
求导分析函数在时的单调性、极值,可得时,满足题意,再在时,求解的x的范围,综合可得结果.【详解】当时,,令,则;,则,∴函数在单调递增,在单调递减.∴函数在处取得极大值为,∴时,的取值范围为,∴又当时,令,则,即,∴综上所述,的取值范围为.故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.12、A【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、充分不必要【解析】
由余弦的二倍角公式可得,即或,即可判断命题的关系.【详解】由,所以或,所以“”是“”的充分不必要条件.故答案为:充分不必要【点睛】本题考查命题的充分条件与必要条件的判断,考查余弦的二倍角公式的应用.14、0.18【解析】
根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.15、【解析】
根据正弦定理得,根据余弦定理得2PF1•PF2cos∠F1PF23,联立方程得到,计算得到答案.【详解】∵△PF1F2中,sin∠PF1F2═,sin∠PF1F2═,∴由正弦定理得,①又∵,tan∠PF2F1=﹣2,∴tan∠F1PF2=﹣tan(∠PF2F1+∠PF1F2),可得cos∠F1PF2,△PF1F2中用余弦定理,得2PF1•PF2cos∠F1PF23,②①②联解,得,可得,∴双曲线的,结合,得离心率.故答案为:.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和转化能力.16、1【解析】
根据二项式定理求出,然后再由二项式定理或多项式的乘法法则结合组合的知识求得系数.【详解】由题意,.∴的展开式中的系数为.故答案为:1.【点睛】本题考查二项式定理,掌握二项式定理的应用是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ)3.【解析】
(Ⅰ)先求导,得,已知导函数单调递增,又在区间上单调递增,故,令,求得,讨论得,而,故,进而得解;(Ⅱ)可通过必要性探路,当时,由知,又由于,则,当,,结合零点存在定理可判断必存在使得,得,,化简得,再由二次函数性质即可求证;【详解】(Ⅰ)的定义域为.易知单调递增,由题意有.令,则.令得.所以当时,单调递增;当时,单调递减.所以,而又有,因此,所以.(Ⅱ)由知,又由于,则.下面证明符合条件.若.所以.易知单调递增,而,,因此必存在使得,即.且当时,单调递减;当时,,单调递增;则.综上,的最大值为3.【点睛】本题考查导数的计算,利用导数研究函数的增减性和最值,属于中档题18、(1)见证明;(2)【解析】
(1)先证明等腰梯形中,然后证明,即可得到丄平面,从而可证明平面丄平面;(2)由,可得到,列出式子可求出,然后建立如图的空间坐标系,求出平面的法向量为,平面的法向量为,由可得到答案.【详解】(1)证明:在等腰梯形,,易得在中,,则有,故,又平面,平面,,即平面,故平面丄平面.(2)在梯形中,设,,,,而,即,.以点为坐标原点,所在直线为轴,所在直线为轴,所在直线为轴,建立如图的空间坐标系,则,,设平面的法向量为,由得,取,得,,同理可求得平面的法向量为,设二面角的平面角为,则,所以二面角的余弦值为.【点睛】本题考查了两平面垂直的判定,考查了利用空间向量的方法求二面角,考查了棱锥的体积的计算,考查了空间想象能力及计算能力,属于中档题.19、(1)①;②8079;(2).【解析】
(1)①时,,,利用导数的几何意义能求出函数在处的切线方程.②由,得,由此能求出的值.(2)根据若对任意给定的,,在区间,上总存在两个不同的,使得成立,得到函数在区间,上不单调,从而求得的取值范围.【详解】(1)①∵,∴∴,∴,∵,所以切线方程为.②,.令,则,.因为①,所以②,由①+②得,所以.所以.(2),当时,函数单调递增;当时,,函数单调递减∵,,所以,函数在上的值域为.因为,,故,,①此时,当变化时、的变化情况如下:—0+单调减最小值单调增∵,,∴对任意给定的,在区间上总存在两个不同的,使得成立,当且仅当满足下列条件,即令,,,当时,,函数单调递增,当时,,函数单调递减所以,对任意,有,即②对任意恒成立.由③式解得:④综合①④可知,当时,对任意给定的,在上总存在两个不同的,使成立.【点睛】本题考查了导数的几何意义、应用导数研究函数的单调性、求函数最值问题,会利用导函数的正负确定函数的单调性,会根据函数的增减性求出闭区间上函数的最值,掌握不等式恒成立时所满足的条件.不等式恒成立常转化为函数最值问题解决.20、(1)见解析;(2).【解析】
(1)先证明,可证平面,再由可证平面,即得证;(2)以为坐标原点,建立如图所示空间直角坐标系,设,求解面的法向量,面的法向量,利用二面角的余弦值为,可求解,转化即得解.【详解】(1)证明:因为是正三角形,为线段的中点,所以.因为是菱形,所以.因为,所以是正三角形,所以,所以平面.又,所以平面.因为平面,所以平面平面.(2)由(1)知平面,所以,.而,所以,.又,所以平面.以为坐标原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急保障车管理制度
- 强弱电竖井管理制度
- 徐福记车间管理制度
- 微权力清单管理制度
- 心电图工作管理制度
- 快递员服务管理制度
- 急诊检验科管理制度
- 总承包会议管理制度
- 患者及陪护管理制度
- 成品库库存管理制度
- 抖音账号代运营合同
- 35kV线路工程电杆组立施工方案
- 走进西方音乐学习通超星期末考试答案章节答案2024年
- 国家开放大学电大《生产管理》2024-2024期末试题及答案试卷号
- 初中生物中考全四册复习知识点总结
- 2024年陕西省中考生物真题(含解析)
- 12J003《室外工程图集》
- 浙江省杭州市滨江区2023-2024学年八年级下学期期末科学试题(解析版)
- 大学武术智慧树知到期末考试答案章节答案2024年浙江大学
- 河南省许昌市2023-2024学年高一下学期期末考试生物试题(无答案)
- 农产品购销合同范本版
评论
0/150
提交评论