九年级人教版_第1页
九年级人教版_第2页
九年级人教版_第3页
九年级人教版_第4页
九年级人教版_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

25.2

用列举法求概率

(第1课时)九年级上册学习目标:

用列举法(列表法)求简单随机事件的概率.复习回顾:

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含在其中的m种结果,那么事件A发生的概率为:求概率的步骤:(1)列举出一次试验中的所有结果(n个);(2)找出其中事件A发生的结果(m个);(3)运用公式求事件A的概率:回答下列问题,并说明理由.

(1)掷一枚硬币,正面向上的概率是_______;

(2)袋子中装有5个红球,3个绿球,这些球除了

颜色外都相同,从袋子中随机摸出一个球,它是红色的

概率为________;

(3)掷一个骰子,观察向上一面的点数,点数大

于4的概率为______.1.复习旧知20红,8黑甲袋20红,15黑,10白乙袋球除了颜色以外没有任何区别。两袋中的球都搅匀。蒙上眼睛从口袋中取一只球,如果你想取出1只黑球,你选哪个口袋成功的机会大呢?在一次试验中,如果可能出现的结果只有有限个,且各种结果出现的可能性大小相等,那么我们可以通过列举试验结果的方法,求出随机事件发生的概率,这种求概率的方法叫列举法.

1.探究新知例1同时向空中抛掷两枚质地均匀的硬币,求下列事件的概率:

(1)两枚硬币全部正面向上;

(2)两枚硬币全部反面向上;

(3)一枚硬币正面向上、一枚硬币反面向上.2.探究新知方法一:将两枚硬币分别记做A、B,于是可以直接列举得到:(A正,B正),(A正,B反)(A反B正)(A反,B反)四种等可能的结果.故:2.探究新知

P(两枚正面向上)=.

P(两枚反面向上)=.

P(一枚正面向上,一枚反面向上)=.方法二:将同时掷两枚硬币,想象为先掷一枚,再掷一枚,分步思考:在第一枚为正面的情况下第二枚硬币有正、反两种情况,同理第一枚为反面的情况下第二枚硬币有正、反两种情况.2.探究新知两枚硬币分别记为第1枚和第2枚,可以用下表列举出所有可能出现的结果.

正反正(正,正)(反,正)反(正,反)(反,反)第1枚第2枚2.探究新知列表法思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?归纳“列表法”的意义:

当试验涉及两个因素(例如两个转盘)并且可能出现的结果数目较多时,为不重不漏地列出所有的结果,通常采用“列表法”。

例2同时掷两枚质地均匀的骰子,计算下列事件的概率:

(1)两枚骰子的点数相同;

(2)两枚骰子点数的和是9;

(3)至少有一枚骰子的点数为2.3.运用新知解:两枚骰子分别记为第1

枚和第2

枚,可以用下

表列举出所有可能的结果.

1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第1枚第2枚可以看出,同时掷两枚骰子,可能出现的结果有36

种,并且它们出现的可能性相等.3.运用新知

1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第1枚第2枚3.运用新知(1)两枚骰子点数相同(记为事件A)的结果有6

种,即(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),所以,P(A)=

=.

1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第1枚第2枚3.运用新知(2)两枚骰子点数之和是9(记为事件B)的结果

有4种,即(3,6),(4,5),(5,4),(6,3),所以,P(B)=

=.

1234561(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)2(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)3(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)4(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)5(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)第1枚第2枚3.运用新知(3)至少有一枚骰子的点数是2(记为事件C)的结果有11种,所以,P(C)=

.思考“同时掷两个质地相同的骰子”与“把一个骰子掷两次”,所得到的结果有变化吗?“同时掷两个质地相同的骰子”两个骰子各出现的点数为1~6点“把一个骰子掷两次”两次骰子各出现的点数仍为1~6点归纳“两个相同的随机事件同时发生”与

“一个随机事件先后两次发生”的结果是一样的。随机事件“同时”与“先后”的关系:甲乙1234567例1:如图,甲转盘的三个等分区域分别写有数字1、2、3,乙转盘的四个等分区域分别写有数字4、5、6、7。现分别转动两个转盘,求指针所指数字之和为偶数的概率。解:(1,4)(1,5)(1,6)(1,7)(2,4)(2,5)(2,6)(2,7)(3,4)(3,5)(3,6)(3,7)共有12种不同结果,每种结果出现的可能性相同,其中数字和为偶数的有6种∴P(数字和为偶数)=3217654甲乙2、用如图所示的两个转盘进行“配紫色”(红与蓝)游戏。请你采用“列表法”法计算配得紫色的概率。甲乙白红蓝蓝黄绿红小明和小刚用如图的两个转盘做游戏,游戏规则如下:分别旋转两个转盘,当两个转盘所转到的数字之积为奇数时,小明得2分;当所转到的数字之积为偶数时,小刚得1分.这个游戏对双方公平吗?若公平,说明理由;若不公平,如何修改规则才能使游戏对双方公平?3、每个转盘分成相等的两个扇形。甲、乙两人利用它们做游戏:同时转动两个转盘,如果两个指针所停区域的颜色相同则甲获胜;如果两个指针所停区域的颜色不同则乙获胜。你认为这个游戏公平吗?黄蓝黄蓝绿蓝例题、(2013·黄冈中考)如图,有四张背面相同的纸牌A,B,C,D,其正面分别是红桃,方块,黑桃,梅花,其中红桃、方块为红色,黑桃、梅花为黑色,小明将这4张纸牌背面朝上洗匀后,摸出一张,将剩余3张洗匀后再摸出一张.(1)求摸出的两张纸牌同为红色的概率.

(无放回)

列表法:ABCDAABACADBBABCBDCCACBCDDDADBDC(1)一共有12种情况,符合条件的有2种,即(2)摸出一张,记下结果放回后再摸出一张.结果又如何?(有放回)

5、一个袋子中装有2个红球和2个绿球,任意摸出一个球,记录颜色后放回,再任意摸出一个球,请你计算两次都摸到红球的概率。若第一次摸出一球后,不放回,结果又会怎样?“放回”与“不放回”的区别:(1)“放回”可以看作两次相同的试验;(2)“不放回”则看作两次不同的试验。

练习一个不透明的布袋子里装有4个大小、质地

均相同的乒乓球,球面上分别标有1,2,3,4.小

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论