河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题_第1页
河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题_第2页
河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题_第3页
河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题_第4页
河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市涞水波峰中学2023年高三4月高考测试数学试题理试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则()A. B. C. D.2.已知函数,则()A.函数在上单调递增 B.函数在上单调递减C.函数图像关于对称 D.函数图像关于对称3.在复平面内,复数对应的点的坐标为()A. B. C. D.4.已知集合,,,则()A. B. C. D.5.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.在平面直角坐标系中,已知点,,若动点满足,则的取值范围是()A. B.C. D.7.若集合,则()A. B.C. D.8.已知函数则函数的图象的对称轴方程为()A. B.C. D.9.正项等差数列的前和为,已知,则=()A.35 B.36 C.45 D.5410.设为非零向量,则“”是“与共线”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件11.某几何体的三视图如图所示,则此几何体的体积为()A. B.1 C. D.12.已知二次函数的部分图象如图所示,则函数的零点所在区间为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用数字、、、、、组成无重复数字的位自然数,其中相邻两个数字奇偶性不同的有_____个.14.已知定义在的函数满足,且当时,,则的解集为__________________.15.已知满足且目标函数的最大值为7,最小值为1,则___________.16.已知函数,则关于的不等式的解集为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,,为的中点.(1)求证:平面;(2)求二面角的余弦值.18.(12分)已知,且.(1)请给出的一组值,使得成立;(2)证明不等式恒成立.19.(12分)已知抛物线的焦点为,准线与轴交于点,点在抛物线上,直线与抛物线交于另一点.(1)设直线,的斜率分别为,,求证:常数;(2)①设的内切圆圆心为的半径为,试用表示点的横坐标;②当的内切圆的面积为时,求直线的方程.20.(12分)在三棱柱中,四边形是菱形,,,,,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.21.(12分)已知倾斜角为的直线经过抛物线的焦点,与抛物线相交于、两点,且.(1)求抛物线的方程;(2)设为抛物线上任意一点(异于顶点),过做倾斜角互补的两条直线、,交抛物线于另两点、,记抛物线在点的切线的倾斜角为,直线的倾斜角为,求证:与互补.22.(10分)已知函数.(1)当时,求曲线在点的切线方程;(2)讨论函数的单调性.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:,.故C正确.考点:复合函数求值.2、C【解析】

依题意可得,即函数图像关于对称,再求出函数的导函数,即可判断函数的单调性;【详解】解:由,,所以函数图像关于对称,又,在上不单调.故正确的只有C,故选:C【点睛】本题考查函数的对称性的判定,利用导数判断函数的单调性,属于基础题.3、C【解析】

利用复数的运算法则、几何意义即可得出.【详解】解:复数i(2+i)=2i﹣1对应的点的坐标为(﹣1,2),故选:C【点睛】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.4、D【解析】

根据集合的基本运算即可求解.【详解】解:,,,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题.5、B【解析】

利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.6、D【解析】

设出的坐标为,依据题目条件,求出点的轨迹方程,写出点的参数方程,则,根据余弦函数自身的范围,可求得结果.【详解】设,则∵,∴∴∴为点的轨迹方程∴点的参数方程为(为参数)则由向量的坐标表达式有:又∵∴故选:D【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法7、A【解析】

先确定集合中的元素,然后由交集定义求解.【详解】,.故选:A.【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键.8、C【解析】

,将看成一个整体,结合的对称性即可得到答案.【详解】由已知,,令,得.故选:C.【点睛】本题考查余弦型函数的对称性的问题,在处理余弦型函数的性质时,一般采用整体法,结合三角函数的性质,是一道容易题.9、C【解析】

由等差数列通项公式得,求出,再利用等差数列前项和公式能求出.【详解】正项等差数列的前项和,,,解得或(舍),,故选C.【点睛】本题主要考查等差数列的性质与求和公式,属于中档题.解等差数列问题要注意应用等差数列的性质()与前项和的关系.10、A【解析】

根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.11、C【解析】该几何体为三棱锥,其直观图如图所示,体积.故选.12、B【解析】由函数f(x)的图象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上单调递增,又g(0)=1-b<0,g(1)=e+2-b>0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对首位数的奇偶进行分类讨论,利用分步乘法计数原理和分类加法计数原理可得出结果.【详解】①若首位为奇数,则第一、三、五个数位上的数都是奇数,其余三个数位上的数为偶数,此时,符号条件的位自然数个数为个;②若首位数为偶数,则首位数不能为,可排在第三或第五个数位上,第二、四、六个数位上的数为奇数,此时,符合条件的位自然数个数为个.综上所述,符合条件的位自然数个数为个.故答案为:.【点睛】本题考查数的排列问题,要注意首位数字的分类讨论,考查分步乘法计数和分类加法计数原理的应用,考查计算能力,属于中等题.14、【解析】

由已知得出函数是偶函数,再得出函数的单调性,得出所解不等式的等价的不等式,可得解集.【详解】因为定义在的函数满足,所以函数是偶函数,又当时,,得时,,所以函数在上单调递减,所以函数在上单调递减,函数在上单调递增,所以不等式等价于,即或,解得或,所以不等式的解集为:.故答案为:.【点睛】本题考查抽象函数的不等式的求解,关键得出函数的奇偶性,单调性,属于中档题.15、-2【解析】

先根据约束条件画出可行域,再利用几何意义求最值,表示直线在轴上的截距,只需求出可行域直线在轴上的截距最大最小值时所在的顶点即可.【详解】由题意得:目标函数在点B取得最大值为7,在点A处取得最小值为1,∴,,∴直线AB的方程是:,∴则,故答案为.【点睛】本题主要考查了简单的线性规划,以及利用几何意义求最值的方法,属于基础题.16、【解析】

判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.【详解】令,易知函数为奇函数,在R上单调递增,,即,∴∴,即x>故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解析】

(1)取的中点,连接,根据中位线的方法证明四边形是平行四边形.再证明与从而证明平面,从而得到平面即可.(2)以所在的直线为轴建立空间直角坐标系,再求得平面的法向量与平面的法向量进而求得二面角的余弦值即可.【详解】(1)证明:如图,取的中点,连接.又为的中点,则是的中位线.所以且.又且,所以且.所以四边形是平行四边形.所以.因为,为的中点,所以.因为,所以.因为平面,所以.又,所以平面.所以.又,所以平面.又,所以平面.(2)易知两两互相垂直,所以分别以所在的直线为轴建立如图所示的空间直角坐标系:因为,所以点.则.设平面的法向量为,由,得,令,得平面的一个法向量为;显然平面的一个法向量为;设二面角的大小为,则.故二面角的余弦值是.【点睛】本题主要考查了线面垂直的证明以及建立空间直角坐标系求解二面角的问题,需要用到线线垂直与线面垂直的转换以及法向量的求法等.属于中档题.18、(1)(答案不唯一)(2)证明见解析【解析】

(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.19、(1)证明见解析;(2)①;②.【解析】

(1)设过的直线交抛物线于,,联立,利用直线的斜率公式和韦达定理表示出,化简即可;(2)由(1)知点在轴上,故,设出直线方程,求出交点坐标,因为内心到三角形各边的距离相等且均为内切圆半径,列出方程组求解即可.【详解】(1)设过的直线交抛物线于,,联立方程组,得:.于是,有:,又,;(2)①由(1)知点在轴上,故,联立的直线方程:.,又点在抛物线上,得,又,;②由题得,(解法一)所以直线的方程为(解法二)设内切圆半径为,则.设直线的斜率为,则:直线的方程为:代入直线的直线方程,可得于是有:得,又由(1)可设内切圆的圆心为则,即:,解得:所以,直线的方程为:.【点睛】本题主要考查了抛物线的性质,直线与抛物线相关的综合问题的求解,考查了学生的运算求解与逻辑推理能力.20、(1)证明见解析;(2).【解析】

(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.21、(1)(2)证明见解析【解析】

(1)根据题意,设直线方程为,联立方程,根据抛物线的定义即可得到结论;(2)根据题意,设的方程为,联立方程得,同理可得,进而得到,再利用点差法得直线的斜率,利用切线与导数的关系得直线的斜率,进而可得与互补.【详解】(1)由题意设直线的方程为,令、,联立,得,根据抛物线的定义得,又,故所求抛物线方程为.(2)依题意,设,,设的方程为,与联立消去得,,同理,直线的斜率=切线的斜率,由,即与互补.【点睛】本题考查直线与抛物线的位置关系的综合应用,直线斜率的应用,考查分析问题解决问题的能力,属于中档题.22、(1);(2)当时,在上单调递增,在上单调递减;当时,在和上单调递增,在上单调递减;当时,在上单调递增;当时,在和上单调递增,在上单调递减.【解析】

(1)根据导数的几何意义求解即可.(2)易得函数定义域是,且.故分,和与四种情况,分别分析得极值点的关系进而求得原函数的单调性即可.【详解】(1)当时,,则切线的斜率为.又,则曲线在点的切线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论