版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
其次章函数、导数及其应用第1讲函数及其表示一、必记3个学问点1.函数映射的概念函数映射两集合A,B设A,B是两个非空数集设A,B是两个非空集合对应关系f:A→B假如依据某个对应关系f,对于集合A中的任何一个数x,在集合B中都存在唯一确定的数f(x)及之对应假如按某一个确定的对应关系f,使对于集合A中的随意一个元素x,在集合B中都有唯一确定的元素y及之对应名称称f:A→B为从集合A到集合B的一个函数称对应f:A→B为从集合A到集合B的一个映射记法y=f(x),x∈A对应f:A→B是一个映射2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;及x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.明显,值域是集合B的子集.(2)函数的三要素:定义域、值域和对应关系.(3)相等函数:假如两个函数的定义域和对应关系完全一样,则这两个函数相等,这是推断两函数相等的依据.(4)函数的表示法表示函数的常用方法有:解析法、图像法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.二、必明3个易误区1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”及“映射”的概念:函数是特殊的映射,映射不肯定是函数,从A到B的一个映射,A、B若不是数集,则这个映射便不是函数.3.误把分段函数理解为几种函数组成.三、必会4个方法求函数解析式的四种常用方法(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法;(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要留意新元的范围;(4)解方程组法:已知关于f(x)及feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))或f(-x)的表达式,可依据已知条件再构造出另外一个等式组成方程组,通过解方程求出f(x).考点一函数及映射的概念1.下列四组函数中,表示同一函数的是()A.y=x-1及y=eq\r(x-12) B.y=eq\r(x-1)及y=eq\f(x-1,\r(x-1))C.y=4lgx及y=2lgx2 D.y=lgx-2及y=lgeq\f(x,100)考点二函数的定义域问题角度一求给定函数解析式的定义域1.函数y=lneq\b\lc\(\rc\)(\a\vs4\al\co1(1+\f(1,x)))+eq\r(1-x2)的定义域为________.角度二已知f(x)的定义域,求f(g(x))的定义域2.已知函数f(x)的定义域是[-1,1],求f(log2x)的定义域考点三求函数的解析式[典例](1)已知feq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(1,x)))=x2+eq\f(1,x2),求f(x)的解析式;(2)已知feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,x)+1))=lgx,求f(x)的解析式;(3)已知f(x)是二次函数,且f(0)=0,f(x+1)=f(x)+x+1,求f(x).[针对训练]已知f(eq\r(x)+1)=x+2eq\r(x),求f(x)的解析式.考点四分段函数[典例](1)已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(lgx,x>0,,x+3,x≤0.))若f(a)+f(1)=0,则实数a的值为()A.-3 B.-1或3C.1 D.-3或1(2)已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(2x3,x<0,,-tanx,0≤x<\f(π,2),))则feq\b\lc\(\rc\)(\a\vs4\al\co1(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,4)))))=________.课后作业[试一试]1.函数y=eq\r(x)ln(1-x)的定义域为()A.(0,1) B.[0,1)C.(0,1] D.[0,1]2.若函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2+1,x≤1,,lgx,x>1,))则f(f(10))=()A.lg101B.2C.1 D.0[练一练]1.设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3D.2x+72.若f(x)=x2+bx+c,且f(1)=0,f(3)=0,则f(x)=________.做一做1.下列函数中,及函数y=eq\f(1,\r(3,x))定义域相同的函数为()A.y=eq\f(1,sinx)B.y=eq\f(lnx,x)C.y=xexD.y=eq\f(sinx,x)2.(2014·广州调研)已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(log2x,x>0,,3x,x≤0,))则feq\b\lc\(\rc\)(\a\vs4\al\co1(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)))))的值是()A.9B.eq\f(1,9)C.-9 D.-eq\f(1,9)3.函数y=(x+1)0+ln(-x)的定义域为________.4.已知f(x)=x2+px+q满意f(1)=f(2)=0,则f(-1)=________.5.有以下推断:(1)f(x)=eq\f(|x|,x)及g(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(1,x≥0,-1,x<0))表示同一个函数.(2)f(x)=x2-2x+1及g(t)=t2-2t+1是同一函数.(3)若f(x)=|x-1|-|x|,则feq\b\lc\(\rc\)(\a\vs4\al\co1(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))))=0.其中正确推断的序号是________.6.已知集合A=[0,8],集合B=[0,4],则下列对应关系中,不能看作从A到B的映射的是()A.f:x→y=eq\f(1,8)xB.f:x→y=eq\f(1,4)xC.f:x→y=eq\f(1,2)xD.f:x→y=x7.函数f(x)=eq\f(\r(2x+1),2x2-x-1)的定义域是()A.{x|x≠-eq\f(1,2)} B.{x|x>-eq\f(1,2)}C.{x|x≠-eq\f(1,2)且x≠1} D.{x|x>-eq\f(1,2)且x≠1}8.二次函数f(x)满意f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.第2讲函数的单调性及最值一、必记3个学问点1.增函数、减函数一般地,设函数f(x)的定义域为I,区间D⊆I,假如对于随意x1,x2∈D,且x1<x2,则有:(1)f(x)在区间D上是增函数⇔f(x1)<f(x2);(2)f(x)在区间D上是减函数⇔f(x1)>f(x2).2.单调区间的定义若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间.3.函数的最值前提设函数y=f(x)的定义域为I,假如存在实数M满意条件①对于随意x∈I,都有f(x)≤M;①对于随意x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0)=M②存在x0∈I,使得f(x0)=M结论M为最大值M为最小值二、必明2个易误区1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),eq\f(1,fx)等的单调性及其正负有关,切不行盲目类比.三、必会2个方法1.推断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数;(3)图像法:假如f(x)是以图像形式给出的,或者f(x)的图像易作出,可由图像的直观性推断函数单调性.(4)导数法:利用导函数的正负推断函数单调性.2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图像法:先作出函数的图像,再视察其最高点、最低点,求出最值.(3)换元法:对比较困难的函数可通过换元转化为熟识的函数,再用相应的方法求最值.(4)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.(5)导数法:先求导,然后求出在给定区间上的极值,最终结合端点值,求出最值.提示:在求函数的值域或最值时,应先确定函数的定义域.考点一求函数的单调区间1.函数f(x)=log5(2x+1)的单调增区间是________.考点二函数单调性的推断[典例]试探讨函数f(x)=eq\f(ax,x-1)(a≠0)在(-1,1)上的单调性.[针对训练]推断函数g(x)=eq\f(-2x,x-1)在(1,+∞)上的单调性.考点三函数单调性的应用角度一求函数的值域或最值1.已知函数f(x)对于随意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-eq\f(2,3).(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.角度二比较两个函数值或两个自变量的大小2.已知函数f(x)=log2x+eq\f(1,1-x),若x1∈(1,2),x2∈(2,+∞),则()A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0角度三解函数不等式3.已知定义在R上的函数f(x)是增函数,则满意f(x)<f(2x-3)的x的取值范围是________.角度四求参数的取值范围或值4.已知函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(a-2x,x≥2,,\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x-1,x<2))满意对随意的实数x1≠x2,都有eq\f(fx1-fx2,x1-x2)<0成立,则实数a的取值范围为()A.(-∞,2)B.eq\b\lc\(\rc\](\a\vs4\al\co1(-∞,\f(13,8)))C.(-∞,2]D.eq\b\lc\[\rc\)(\a\vs4\al\co1(\f(13,8),2))[试一试]1.下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.y=-eq\r(x+1)C.y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x D.y=x+eq\f(1,x)2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为______;f(x)max=________.[练一练]1.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=eq\f(1,x) B.y=e-C.y=-x2+1D.y=lg|x|2.函数f(x)=eq\f(1,x2+1)在区间[2,3]上的最大值是________,最小值是________.做一做1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-eq\f(1,x+1) D.f(x)=-|x|2.函数f(x)=|x-2|x的单调减区间是()A.[1,2]B.[-1,0]C.[0,2]D.[2,+∞)3.已知函数f(x)为R上的减函数,若m<n,则f(m)______f(n);若feq\b\lc\(\rc\)(\a\vs4\al\co1(\b\lc\|\rc\|(\a\vs4\al\co1(\f(1,x)))))<f(1),则实数x的取值范围是________.4.函数f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))x-log2(x+2)在区间[-1,1]上的最大值为________.5.函数f(x)=eq\f(ax+1,x+2)在区间(-2,+∞)上是递增的,求实数a的取值范围.6.定义新运算⊕:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2,则函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2]的最大值等于()A.-1B.1C.6D.127.已知奇函数f(x)对随意的正实数x1,x2(x1≠x2),恒有(x1-x2)(f(x1)-f(x2))>0,则肯定正确的是()A.f(4)>f(-6)B.f(-4)<f(-6)C.f(-4)>f(-6) D.f(4)<f(-6)其次章函数、导数及其应用第3讲函数的奇偶性及周期性一、必记2个学问点1.函数的奇偶性奇偶性定义图像特点偶函数假如对于函数f(x)的定义域内随意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数关于y轴对称奇函数假如对于函数f(x)的定义域内随意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数关于原点对称2.周期性(1)周期函数:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:假如在周期函数f(x)的全部周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.二、必明3个易误区1.推断函数的奇偶性,易忽视推断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.推断函数f(x)的奇偶性时,必需对定义域内的每一个x,均有f(-x)=-f(x),而不能说存在x0使f(-x0)=-f(x0)、f(-x0)=f(x0).3.分段函数奇偶性判定时,f(-x0)=f(x0)利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性是错误的.三、必会2个方法1.推断函数奇偶性的两个方法(1)定义法:(2)图像法:2.周期性常用的结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=eq\f(1,fx),则T=2a;(3)若f(x+a)=-eq\f(1,fx),则T=2a.(a>0)考点一函数奇偶性的推断推断下列函数的奇偶性.(1)f(x)=eq\r(1-x2)+eq\r(x2-1);(2)f(x)=eq\r(3-2x)+eq\r(2x-3);(3)f(x)=3x-3-x;(4)f(x)=eq\f(\r(4-x2),|x+3|-3);(5)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2+x,x>0,,x2-x,x<0.))考点二函数奇偶性的应用[典例](1)(2013·山东高考)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+eq\f(1,x),则f(-1)=()A.-2B.0C.1D.2(2)已知奇函数f(x)的定义域为[-2,2],且在区间[-2,0]上递减,求满意f(1-m)+f(1-m2)<0的实数m的取值范围.一题多变:本例(2)中条件在区间[-2,0]上“递减”变为“递增”,试想m的范围变更吗?若变更,求m的取值范围[针对训练]1.设函数f(x)=x(ex+ae-x)(x∈R)是偶函数,则实数a的值为________.2.已知函数y=f(x)是R上的偶函数,且在(-∞,0]上是减函数,若f(a)≥f(2),则实数a的取值范围是________.考点三函数的周期性及其应用[典例]定义在R上的函数f(x)满意f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=()A.335 B.338C.1678 D.2012[针对训练]设f(x)是定义在R上的奇函数,且对随意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式.课后作业[试一试]1.(2013·广东高考)定义域为R的四个函数y=x3,y=2x,y=x2+1,y=2sinx中,奇函数的个数是()A.4B.3C.2D.12.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是()A.-eq\f(1,3)B.eq\f(1,3)C.eq\f(1,2)D.-eq\f(1,2)[练一练]3已知定义在R上的函数f(x)满意f(x)=-feq\b\lc\(\rc\)(\a\vs4\al\co1(x+\f(3,2))),且f(1)=2,则f(2014)=________.4.设f(x)是周期为2的奇函数,当0≤x≤1时,f(x)=2x(1-x),则feq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(5,2)))=()A.-eq\f(1,2)B.-eq\f(1,4)C.eq\f(1,4)D.eq\f(1,2)5.(2014·大连测试)下列函数中,及函数y=-3|x|的奇偶性相同,且在(-∞,0)上单调性也相同的是()A.y=-eq\f(1,x) B.y=log2|x|C.y=1-x2 D.y=x3-16.设函数f(x)=x3cosx+1.若f(a)=11,则f(-a)=________.7.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.8.设定义在[-2,2]上的偶函数f(x)在区间[-2,0]上单调递减,若f(1-m)<f(m),求实数m的取值范围.9.函数f(x)是周期为4的偶函数,当x∈[0,2]时,f(x)=x-1,则不等式xf(x)>0在[-1,3]上的解集为()A.(1,3) B.(-1,1)C.(-1,0)∪(1,3) D.(-1,0)∪(0,1)10.设函数f(x)是定义在R上的偶函数,且对随意的x∈R恒有f(x+1)=f(x-1),已知当x∈[0,1]时,f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))1-x,则:①2是函数f(x)的周期;②函数f(x)在(1,2)上递减,在(2,3)上递增;③函数f(x)的最大值是1,最小值是0;④当x∈(3,4)时,f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x-3.其中全部正确命题的序号是________.其次章函数、导数及其应用第4讲函数的图像一、必记2个学问点1.利用描点法作函数图像其基本步骤是列表、描点、连线,详细为:首先:①确定函数的定义域;②化简函数解析式;③探讨函数的性质(奇偶性、单调性、周期性);其次:列表(尤其留意特殊点、零点、最大值点、最小值点、及坐标轴的交点);最终:描点,连线.2.利用图像变换法作函数的图像(1)平移变换:y=f(x)eq\o(→,\s\up7(a>0,右移a个单位),\s\do5(a<0,左移|a|个单位))y=f(x-a);y=f(x)eq\o(→,\s\up7(b>0,上移b个单位),\s\do5(b<0,下移|b|个单位))y=f(x)+b.(2)伸缩变换:y=f(x)y=f(ωx);y=f(x)eq\o(→,\s\up7(A>1,伸为原来的A倍),\s\do5(0<A<1,缩为原来的A倍))y=Af(x).(3)对称变换:y=f(x)eq\o(→,\s\up7(关于x轴对称),\s\do5())y=-f(x);y=f(x)eq\o(→,\s\up7(关于y轴对称),\s\do5())y=f(-x);y=f(x)eq\o(→,\s\up7(关于原点对称),\s\do5())y=-f(-x).(4)翻折变换:y=f(x)eq\o(→,\s\up7(去掉y轴左边图,保留y轴右边图),\s\do5(将y轴右边的图像翻折到左边去))y=f(|x|);y=f(x)eq\o(→,\s\up7(留下x轴上方图),\s\do5(将x轴下方图翻折上去))y=|f(x)|.二、必明2个易误区1.在解决函数图像的变换问题时,要遵循“只能对函数关系式中的x,y变换”的原则,写出每一次的变换所得图像对应的解析式,这样才能避开出错.2.明确一个函数的图像关于y轴对称及两个函数的图像关于y轴对称的不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系.三、必会2个方法1.数形结合思想借助函数图像,可以探讨函数的定义域、值域、单调性、奇偶性、对称性等性质;利用函数的图像,还可以推断方程f(x)=g(x)的解的个数、求不等式的解集等.2.分类探讨思想画函数图像时,假如解析式中含参数,还要对参数进行探讨,分别画出其图像.考点一作函数的图像分别画出下列函数的图像:(1)y=|lgx|;(2)y=2x+2;(3)y=x2-2|x|-1.考点二识图及辨图[典例](1)(2013·福建高考)函数f(x)=ln(x2+1)的图像大致是()(2)已知定义在区间[0,2]上的函数y=f(x)的图像如图所示,则y=-f(2-x)的图像为()[针对训练]1.函数y=xsinx在[-π,π]上的图像是()2.如图,函数f(x)的图像是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,f3)))的值等于________.考点三函数图像的应用角度一确定方程根的个数1.已知f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(|lgx|,x>0,,2|x|,x≤0,))则函数y=2f2(x)-3f(x)+1的零点个数是___.角度二求参数的取值范围2.对实数a和b,定义运算“⊗”:a⊗b=eq\b\lc\{\rc\(\a\vs4\al\co1(a,a-b≤1,,b,a-b>1.))设函数eq\a\vs4\al(fx=)(x2-2)⊗(x-1),x∈R.若函数y=f(x)-c的图像及x轴恰有两个公共点,则实数c的取值范围是()A.(-1,1]∪(2,+∞) B.(-2,-1]∪(1,2]C.(-∞,-2)∪(1,2] D.[-2,-1]课后作业[试一试]1.函数y=log2(|x|+1)的图像大致是()[练一练]2.若关于x的方程|x|=a-x只有一个解,则实数a的取值范围是________.做一做3.函数y=x|x|的图像经描点确定后的形态大致是()4.函数f(x)的图像向右平移1个单位长度,所得图像及曲线y=ex关于y轴对称,则f(x)=()A.ex+1B.ex-1C.e-x+1D.e-x-15.已知函数f(x)的图像如图所示,则函数g(x)=logf(x)的定义域是________.6.设函数f(x)=|x+a|,g(x)=x-1,对于随意的x∈R,不等式f(x)≥g(x)恒成立,则实数a的取值范围是________.7.函数f(x)=2x3的图像()A.关于y轴对称 B.关于x轴对称C.关于直线y=x对称 D.关于原点对称8.函数y=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x<0,,2x-1,x≥0))的图像大致是()9.为了得到函数y=2x-3-1的图像,只需把函数y=2x的图像上全部的点()A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度10.函数y=eq\f(x3,3x-1)的图像大致是()11..函数f(x)=eq\f(x+1,x)图像的对称中心为________.12.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?其次章函数、导数及其应用第5讲二次函数及幂函数一、必记3个学问点1.五种常见幂函数的图像及性质函数特征性质y=xy=x2y=x3y=xy=x-1图像定义域RRR{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图像和性质二、必明2个易误区1.探讨函数f(x)=ax2+bx+c的性质,易忽视a的取值状况而盲目认为f(x)为二次函数.2.形如y=xα(α∈R)才是幂函数,如y=3x不是幂函数.三、必会3个方法1.函数y=f(x)对称轴的推断方法(1)对于二次函数y=f(x),假如定义域内有不同两点x1,x2且f(x1)=f(x2),那么函数y=f(x)的图像关于x=eq\f(x1+x2,2)对称.(2)二次函数y=f(x)对定义域内全部x,都有f(a+x)=f(a-x)成立的充要条件是函数y=f(x)的图像关于直线x=a对称(a为常数).2.及二次函数有关的不等式恒成立两个条件(1)ax2+bx+c>0,a≠0恒成立的充要条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a>0,,b2-4ac<0.))(2)ax2+bx+c<0,a≠0恒成立的充要条件是eq\b\lc\{\rc\(\a\vs4\al\co1(a<0,,b2-4ac<0.))3.两种数学思想(1)数形结合是探讨二次函数问题的基本方法.特殊是涉及二次方程、二次不等式的时候常常要结合图形找寻思路.(2)含字母系数的二次函数问题常常运用的方法是分类探讨.比如探讨二次函数的对称轴及给定区间的位置关系,探讨二次方程根的大小等.考点一幂函数的图像及性质1.图中曲线是幂函数y=xα在第一象限的图像.已知n取±2,±eq\f(1,2)四个值,则相应于曲线C1,C2,C3,C4的α值依次为________.2.设a=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,5))),b=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,5))),c=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,5))),则a,b,c的大小关系是________.考点二求二次函数的解析式[典例]已知二次函数f(x)满意f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定此二次函数的解析式.[针对训练]已知y=f(x)为二次函数,且f(0)=-5,f(-1)=-4,f(2)=-5,求此二次函数的解析式.考点三二次函数的图像及性质角度一轴定区间定求最值1.已知函数f(x)=x2+2ax+3,x∈[-4,6],当a=-2时,求f(x)的最值.角度二轴动区间定求最值2.已知函数f(x)=-x2+2ax+1-a在x∈[0,1]时有最大值2,求a的值.角度三轴定区间动求最值3.设函数y=x2-2x,x∈[-2,a],若函数的最小值为g(a),求g(a).课后作业[试一试]1.若f(x)既是幂函数又是二次函数,则f(x)可以是()A.f(x)=x2-1B.f(x)=5x2C.f(x)=-x2D.f(x)=x22.已知函数f(x)=ax2+x+5的图像在x轴上方,则a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(1,20)))B.eq\b\lc\(\rc\)(\a\vs4\al\co1(-∞,-\f(1,20)))C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,20),+∞))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,20),0))[练一练]假如函数f(x)=x2+(a+2)x+b(x∈[a,b])的图像关于直线x=1对称,则函数f(x)的最小值为________.做一做1.下面给出4个幂函数的图像,则图像及函数的大致对应是()A.①y=x,②y=x2,③y=x,④y=x-1B.①y=x3,②y=x2,③y=x,④y=x-1C.①y=x2,②y=x3,③y=x,④y=x-1D.①y=x,②y=x,③y=x2,④y=x-12.已知函数h(x)=4x2-kx-8在[5,20]上是单调函数,则k的取值范围是()A.(-∞,40]B.[160,+∞)C.(-∞,40]∪[160,+∞)D.∅3.二次函数的图像过点(0,1),对称轴为x=2,最小值为-1,则它的解析式为_______.4.若二次函数f(x)=ax2-4x+c的值域为[0,+∞),则a,c满意的条件是________.5.已知函数f(x)=(m2-m-1)x-5m-3,m为何值时,f(x)是幂函数,且在(0,+∞)上是增函数?6.函数y=x-x的图像大致为()7.“a=1”是“函数f(x)=x2-4ax+3在区间[2,+∞)上为增函数”的_______条件.8.若函数f(x)=x2-ax-a在区间[0,2]上的最大值为1,则实数a等于_____.9.已知函数f(x)=x2+bx+1是R上的偶函数,则实数b=________,不等式f(x-1)<x的解集为________.10.已知幂函数f(x)=x(m∈N*),经过点(2,eq\r(2)),试确定m的值,并求满意条件f(2-a)>f(a-1)的实数a的取值范围.11.已知函数f(x)=ax2-2ax+2+b(a≠0),若f(x)在区间[2,3]上有最大值5,最小值2.(1)求a,b的值;(2)若b<1,g(x)=f(x)-mx在[2,4]上单调,求m的取值范围其次章函数、导数及其应用第6讲指数及指数函数一、必记3个学问点1.根式的性质(1)(eq\r(n,a))n=a.(2)当n为奇数时eq\r(n,an)=a;当n为偶数时eq\r(n,an)=eq\b\lc\{\rc\(\a\vs4\al\co1(aa≥0,,-aa<0.))2.有理数指数幂(1)幂的有关概念:①正分数指数幂:a=eq\r(n,am)(a>0,m,n∈N*,且n>1).②负分数指数幂:a==eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1).③0的正分数指数幂等于0,0的负分数指数幂没有意义.(2)有理数指数幂的性质:①aras=ar+s(a>0,r,s∈Q);②(ar)s=ars(a>0,r,s∈Q);③(ab)r=arbr(a>0,b>0,r∈Q).3.指数函数的图像及性质y=axa>10<a<1图像定义域R值域(0,+∞)性质过定点(0,1)当x>0时,y>1;x<0时,0<y<1当x>0时,0<y<1;x<0时,y>1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数二、必明2个易误区1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y=ax(a>0,a≠1)的图像和性质跟a的取值有关,要特殊留意区分a>1或0<a<1.三、必会2个方法1.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(a2x+b·ax+c≤0)的指数方程或不等式,常借助换元法解决.2.指数函数的单调性是由底数a的大小确定的,因此解题时通常对底数a按0<a<1和a>1进行分类探讨.考点一指数幂的化简及求值求值及化简:(1)eq\b\lc\(\rc\)(\a\vs4\al\co1(2\f(3,5)))0+2-2·eq\b\lc\(\rc\)(\a\vs4\al\co1(2\f(1,4)))-(0.01)0.5;(2)eq\f(5,6)a·b-2·(-3ab-1)÷(4a·b-3);(3)考点二指数函数的图像及应用[典例](1)(2012·四川高考)函数y=ax-a(a>0,且a≠1)的图像可能是()(2)已知实数a,b满意等式eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))a=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不行能成立的关系式有()A.1个B.2个C.3个D.4个[针对训练]1.在同一坐标系中,函数y=2x及y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x的图像之间的关系是()A.关于y轴对称 B.关于x轴对称C.关于原点对称 D.关于直线y=x对称2.方程2x=2-x的解的个数是________.考点三指数函数的性质及应用[典例]已知f(x)=eq\f(a,a2-1)(ax-a-x)(a>0,且a≠1).(1)推断f(x)的奇偶性;(2)探讨f(x)的单调性.一题多变在本例条件下,当x∈[-1,1]时,f(x)≥b恒成立,求b的取值范围.课后作业[试一试]1.化简[(-2)6]-(-1)0的结果为()A.-9B.7C.-10 D.92.若函数y=(a2-1)x在(-∞,+∞)上为减函数,则实数a的取值范围是________.[练一练]1.函数y=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x)的定义域为________.2.若函数f(x)=ax-1(a>0,a≠1)的定义域和值域都是[0,2],则实数a=________.做一做1.已知f(x)=2x+2-x,若f(a)=3,则f(2a)等于()A.5B.7C.9D.112.已知f(x)=3x-b(2≤x≤4,b为常数)的图像经过点(2,1),则f(x)的值域()A.[9,81]B.[3,9]C.[1,9]D.[1,+∞)3.函数y=8-23-x(x≥0)的值域是________.4.已知正数a满意a2-2a-3=0,函数f(x)=ax,若实数m,n满意f(m)>f(n),则m,n的大小关系为________.5.函数f(x)=ax(a>0,且a≠1)在区间[1,2]上的最大值比最小值大eq\f(a,2),求a的值.6.函数f(x)=ax-1(a>0,a≠1)的图像恒过点A,下列函数中图像不经过点A的是()A.y=eq\r(1-x)B.y=|x-2|C.y=2x-1D.y=log2(2x)7.函数y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))的值域是()A.(0,+∞) B.(0,1)C.(0,1]D.[1,+∞)8.函数f(x)=2|x-1|的图像是()9.已知a=20.2,b=0.40.2,c=0.40.6,则()A.a>b>cB.a>c>bC.c>a>bD.b>c>a10.计算:eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(7,6)))0+8×eq\r(4,2)-=________.11.设a>0且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,求a的值.其次章函数、导数及其应用第7讲对数及对数函数一、必记4个学问点1.对数的定义假如ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.2.对数的性质及运算及换底公式(1)对数的性质(a>0且a≠1):①loga1=0;②logaa=1;③alogaN=N.(2)对数的换底公式:基本公式:logab=eq\f(logcb,logca)(a,c均大于0且不等于1,b>0).(3)对数的运算法则:假如a>0且a≠1,M>0,N>0,那么①loga(M·N)=logaM+logaN,②logaeq\f(M,N)=logaM-logaN,③logaMn=nlogaM(n∈R).3.对数函数的图像及性质a>10<a<1图像定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>04.反函数指数函数y=ax(a>0且a≠1)及对数函数y=logax(a>0且a≠1)互为反函数,它们的图像关于直线y=x对称.二、必明2个易误区1.在运算性质logaMn=nlogaM中,易忽视M>0.2.解决及对数函数有关的问题时易漏两点:(1)函数的定义域;(2)对数底数的取值范围.三、必会2个方法1.对数值的大小比较的基本方法(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同真数后利用图像比较.2.明确对数函数图像的基本点(1)当a>1时,对数函数的图像“上升”;当0<a<1时,对数函数的图像“下降”.(2)对数函数y=logax(a>0,且a≠1)的图像过定点(1,0),且过点(a,1)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a),-1)),函数图像只在第一、四象限.考点一对数式的化简及求值1.(2013·陕西高考)设a,b,c均为不等于1的正实数,则下列等式中恒成立的是()A.logab·logcb=logca B.logab·logca=logcbC.loga(bc)=logab·logac D.loga(b+c)=logab+logac2.计算下列各题:(1)lgeq\f(3,7)+lg70-lg3-eq\r(lg32-lg9+1);(2)eq\f(1,2)lgeq\f(32,49)-eq\f(4,3)lgeq\r(8)+lgeq\r(245)考点二对数函数的图像及应用典例当0<x≤eq\f(1,2)时,4x<logax,则a的取值范围是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(\r(2),2)))B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2),1))C.(1,eq\r(2))D.(eq\r(2),2)一题多解若本例变为:若不等式(x-1)2<logax在x∈(1,2)内恒成立,则实数a的取值范围为________.[针对训练]若函数f(x)=loga(x+b)的大致图像如图,其中a,b为常数,则函数g(x)=ax+b的大致图像是()考点三对数函数的性质及应用[典例]已知函数f(x)=log4(ax2+2x+3).(1)若f(1)=1,求f(x)的单调区间;(2)是否存在实数a,使f(x)的最小值为0?若存在,求出a的值;若不存在,说明理由.课后作业[试一试]1.函数y=eq\f(1,log2x-2)的定义域是()A.(-∞,2) B.(2,+∞)C.(2,3)∪(3,+∞) D.(2,4)∪(4,+∞)2.lgeq\r(5)+lgeq\r(20)的值是________.[练一练]1.函数y=loga(3x-2)(a>0,a≠1)的图像经过定点A,则A点坐标是()A.eq\b\lc\(\rc\)(\a\vs4\al\co1(0,\f(2,3)))B.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2,3),0))C.(1,0)D.(0,1)2.设a=log32,b=log52,c=log23,则()A.a>c>bB.b>c>aC.c>b>aD.c>a>b做一做1.设f(x)为定义在R上的奇函数,当x>0时,f(x)=log3(1+x),则f(-2)=()A.-1B.-3C.1D.32.函数y=eq\f(lgx+1,x-1)的定义域是()A.(-1,+∞) B.[-1,+∞)C.(-1,1)∪(1,+∞) D.[-1,1)∪(1,+∞)3.函数y=lgeq\f(1,|x+1|)的大致图像为()4.设函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(21-x,x≤1,,1-log2x,x>1,))则满意f(x)≤2的x的取值范围是()A.[-1,2]B.[0,2]C.[1,+∞)D.[0,+∞)5.若log2aeq\f(1+a2,1+a)<0,则a的取值范围是________.6.函数f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(log\f(1,2)x,x≥1,,2x,x<1))的值域为________.7.函数y=eq\r(1-lgx+2)的定义域为()A.(0,8]B.(2,8]C.(-2,8]D.[8,+∞)8.若函数y=f(x)是函数y=ax(a>0,且a≠1)的反函数,且f(2)=1,则f(x)=()A.log2xB.eq\f(1,2x)C.logxD.2x-29.设a=log36,b=log510,c=log714,则()A.c>b>aB.b>c>aC.a>c>bD.a>b>c10.已知函数f(x)=loga|x|在(0,+∞)上单调递增,则()A.f(3)<f(-2)<f(1) B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3) D.f(3)<f(1)<f(-2)11.计算:(log29)·(log34)=________.12.设2a=5b=m,且eq\f(1,a)+eq\f(1,b)=2,则m=________.13.设f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.(1)求a的值及f(x)的定义域.(2)求f(x)在区间eq\b\lc\[\rc\](\a\vs4\al\co1(0,\f(3,2)))上的最大值.其次章函数、导数及其应用第8讲函数及方程一、必记3个学问点1.函数零点的定义对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.2.二次函数y=ax2+bx+c(a>0)的图像及零点的关系Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图像及x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数两个一个零个3.二分法对于在区间[a,b]上连绵不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步靠近零点,进而得到零点近似值的方法叫做二分法.二、必明2个易误区1.函数y=f(x)的零点即方程f(x)=0的实根,易误为函数点.2.由函数y=f(x)在闭区间[a,b]上有零点不肯定能推出f(a)·f(b)<0,如图所示.所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.三、必会3个方法1.函数零点个数的推断方法(1)干脆求零点:令f(x)=0,假如能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[a,b]上是连绵不断的曲线,且f(a)·f(b)<0,还必需结合函数的图像及性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图像交点的个数:画出两个函数的图像,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.2.三个等价关系(三者相互转化)3.用二分法求函数零点近似值的步骤第一步:确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε;其次步:求区间(a,b)的中点c.第三步:计算f(c);①若f(c)=0,则c就是函数的零点;②若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));③若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).第四步:推断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值a(或b),否则重复其次、三、四步.考点一函数零点所在区间的判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东海洋大学《环境工程制图与CAD》2023-2024学年第一学期期末试卷
- 广东工商职业技术大学《和声(2)》2023-2024学年第一学期期末试卷
- 广东潮州卫生健康职业学院《藏族文化概论》2023-2024学年第一学期期末试卷
- 广东财经大学《内燃机设计》2023-2024学年第一学期期末试卷
- 社保统计培训课件
- 安全运输课件
- 《组织环境与文化》课件
- 培训体系课件要求
- 赣州师范高等专科学校《地理信息系统开发》2023-2024学年第一学期期末试卷
- 《辅助技能》课件
- 2024年01月11073法律文书期末试题答案
- 湘艺版 四年级上册音乐教案- 第五课 踩雨
- 魔方社团活动记录-副本
- 《振动力学》习题集(含答案解析)
- 诊断课件诊断学咯血
- 高速公路项目施工安全标准化图集(多图)
- 第一节植物细胞的结构和功能 (3)
- D502-15D502等电位联结安装图集
- 设计风速、覆冰的基准和应用
- 水果深加工项目商业计划书范文参考
- 爱丽丝梦游仙境话剧中英文剧本
评论
0/150
提交评论