版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江苏省淮安市码头中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<),其图象相邻两条对称轴之间的距离为,且函数f(x+)是偶函数,下列判断正确的是()A.函数f(x)的最小正周期为2πB.函数f(x)的图象关于点(,0)d对称C.函数f(x)的图象关于直线x=﹣对称D.函数f(x)在[,π]上单调递增参考答案:D【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】由题意可求f(x)的周期T,利用周期公式可求ω,函数f(x+)是偶函数,可得+φ=kπ+,k∈Z,又|φ|<,解得φ,可得解析式f(x)=sin(2x+),利用正弦函数的图象和性质即可判断求解.【解答】解:函数f(x)=sin(ωx+φ)图象的相邻两条对称轴之间的距离等于,∴函数f(x)的周期T=π,故A错误;∵ω>0∴ω=2,∴函数f(x+)的解析式为:f(x)=sin[2(x+)+φ]=sin(2x++φ),∵函数f(x+)是偶函数,∴+φ=kπ+,k∈Z,又|φ|<,解得:φ=.∴f(x)=sin(2x+).∴由2x+=kπ,k∈Z,解得对称中心为:(﹣,0),k∈Z,故B错误;由2x+=kπ+,k∈Z,解得对称轴是:x=,k∈Z,故C错误;由2kπ≤2x+≤2kπ+,k∈Z,解得单调递增区间为:[kπ,kπ],k∈Z,故D正确.故选:D.2.设椭圆(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为,则此椭圆的方程为()A. B.C. D.参考答案:B【考点】椭圆的标准方程.【分析】先求出抛物线的焦点,确定椭圆的焦点在x轴,然后对选项进行验证即可得到答案.【解答】解:∵抛物线的焦点为(2,0),椭圆焦点在x轴上,排除A、C,由排除D,故选B3.已知向量,则以a,b为邻边的平行四边形的面积为(
)A.
B.
C.4
D.8
参考答案:B4.如图,在棱长为a的正方体ABCD﹣A1B1C1D1中,EF是棱AB上的一条线段,且EF=b<a,若Q是A1D1上的定点,P在C1D1上滑动,则四面体PQEF的体积()A.是变量且有最大值 B.是变量且有最小值C.是变量无最大最小值 D.是常量参考答案:D【考点】棱柱、棱锥、棱台的体积.【分析】根据等底同高的三角形面积相等及P到平面QEF的距离是定值,结合棱锥的体积公式,即可得出结论.【解答】解:∵因为EF定长,Q到EF的距离就是Q到CD的距离也为定长,即底和高都是定值,∴△QEF的面积是定值,∵C1D1∥平面QEF,P在C1D1上滑动,∴P到平面QEF的距离是定值.即三棱锥的高也是定值,于是体积固定.∴三棱锥P﹣QEF的体积是定值.故选:D.【点评】本题考查的知识点棱锥的体积及点到平面的距离,其中线面平行时直线上到点到平面的距离相等是解答本题的关键.5.用反证法证明命题:“三角形三个内角至少有一个不大于60°”时,应假设(
)A.三个内角都不大于60°
B.三个内角都大于60°
C.三个内角至多有一个大于60°
D.三个内角至多有两个大于60°参考答案:B命题的反面是:三个内角都大于,故选B.
6.某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为(
)A.24 B.36 C.42 D.48参考答案:B【分析】先用捆绑法将语文与化学看成一个整体,考虑其顺序;将这个整体与英语,物理全排列,分析排好后的空位数目,再在空位中安排数学,最后由分步计数原理计算可得.【详解】由题得语文和化学相邻有种顺序;将语文和化学看成整体与英语物理全排列有种顺序,排好后有4个空位,数学不在第一节有3个空位可选,则不同的排课法的种数是,故选B.7.已知向量,,若向量与向量互相垂直,则实数的值是(
).A. B. C. D.参考答案:D∵,,∴,,∵与互相垂直,∴,解得:.故选.8.如图,四棱柱的底面是正方形,侧棱平面
,且,则异面直线所成角的余弦值为(
)A.
B.
C.
D.参考答案:D9.已知函数y=f(x)(x∈R)的图象如图所示,f′(x)是f(x)的导函数,则不等式(x﹣1)f′(x)<0的解集为()A.(﹣∞,)∪(1,2) B.(﹣1,1)∪(1,3) C.(﹣1,)∪(3,+∞) D.(﹣∞,﹣1)∪(3,+∞)参考答案:A【考点】利用导数研究函数的单调性.【分析】先由(x﹣1)f'(x)<0,分成x﹣1>0且f'(x)<0或x﹣1<0且f'(x)>0两种情况分别讨论即可【解答】解:当x﹣1>0,即x>1时,f'(x)<0,即找在f(x)在(1,+∞)上的减区间,由图象得,1<x<2;当x﹣1<0时,即x<1时,f'(x)>0,即找f(x)在(﹣∞,1)上的增区间,由图象得,x<.故不等式解集为(﹣∞,)∪(1,2)故选:A.10.从双曲线的左焦点引圆的切线,切点为,延长交双曲线右支于点,若为线段的中点,为坐标原点,则与
的大小关系为
(
)
A.
B.C.
D.不确定参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.一项“过关游戏”的规则规定:在第n关要抛一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。则连过前3关的概率为_________.参考答案:
解析:由于骰子是均匀正方体,所以抛掷后各点数出现的可能性是相等的.设事件An为“第n次过关失败”,则对立事件Bn为“第n次过关成功”第n次游戏中,基本事件总数为6n
第1关:事件Al所含基本事件数为2(即出现点数1和2两种情况).所以过此关的概率为P(B1)=1-
P(A1)=;
第2关:事件A2所含基本事件数为方程x+y=a当a分别取2、3、4时的正整数解组数之和,即6个.所以过此关概率为P(B2)=1-P(A2)=;
第3关:事件A3所含基本事件数为方程x+y+z=a当a分别取3、4、5、6、7、8时的正整数解组数之和,即56个.所以过此关概率为P(B3)=1-P(A3)=;
故连过三关的概率为P(B1)×P(B2)×P(B3)=12.一枚骰子(形状为正方体,六个面上分别标有数字1,2,3,4,5,6的玩具)先后抛掷两次,骰子向上的点数依次为.则的概率为
▲
.参考答案:略13.若n为正偶数,则被9除所得的余数是________.参考答案:0原式=又n为正偶数,(-1)n-1=-2=-9+7,故余数为014.下面的程序输出的结果=
参考答案:1715.已知函数,则
▲
.参考答案:016.设为虚数单位,若复数
.参考答案:试题分析:考点:复数运算17.如图,由编号,,…,,…(且)的圆柱自下而上组成.其中每一个圆柱的高与其底面圆的直径相等,且对于任意两个相邻圆柱,上面圆柱的高是下面圆柱的高的一半.若编号1的圆柱的高为,则所有圆柱的体积的和为_______________(结果保留).参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ(Ⅱ)求二面角Q﹣BP﹣C的余弦值.参考答案:【考点】MJ:与二面角有关的立体几何综合题;LY:平面与平面垂直的判定;MN:向量语言表述面面的垂直、平行关系;MR:用空间向量求平面间的夹角.【分析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出、、的坐标,由向量积的运算易得?=0,?=0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、、的坐标,进而求出平面的PBC的法向量与平面PBQ法向量,进而求出cos<,>,根据二面角与其法向量夹角的关系,可得答案.【解答】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);则=(1,1,0),=(0,0,1),=(1,﹣1,0),所以?=0,?=0;即PQ⊥DQ,PQ⊥DC,故PQ⊥平面DCQ,又PQ?平面PQC,所以平面PQC⊥平面DCQ;(Ⅱ)依题意,有B(1,0,1),=(1,0,0),=(﹣1,2,﹣1);设=(x,y,z)是平面的PBC法向量,则即,因此可取=(0,﹣1,﹣2);设是平面PBQ的法向量,则,可取=(1,1,1),所以cos<,>=﹣,故二面角角Q﹣BP﹣C的余弦值为﹣.19.(10分)如图,在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.(1)求证:A1D⊥DC;(2)求二面角E﹣A1B﹣C的余弦值;(3)判断在线段EB上是否存在一点P,使平面A1DP⊥平面A1BC?若存在,求出的值,若不存在,说明理由.参考答案:【考点】二面角的平面角及求法;直线与平面垂直的性质;平面与平面垂直的判定.【分析】(1)由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,利用向量法能证明A1D⊥DC.(2)求出平面A1BE的一个向量和平面A1BC的一个法向量,利用向量法能求出二面角E﹣A1B﹣C的余弦值.(3)设=λ(0≤λ≤1),===(﹣2,2λ,0),求出平面A1DP的法向量和平面A1BC法向量,利用向量法能求出在线段EB上存在一点P,使平面A1DP⊥平面A1BC.【解答】证明:(1)∵在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.∴由题意知EA1,EB,ED两两垂直,建立空间直角坐标系,由题意得DE=2,从而A1(2,0,0),B(0,2,0),C(0,4,2),D(0,0,2),∴=(﹣2,0,2),=(0,4,0),∵?=0,∴A1D⊥DC.解:(2)平面A1BE的一个向量=(0,0,1),=(2,﹣2,0),=(0,2,2),设平面A1BC的一个法向量为=(x,y,z),则,令z=1,则=(﹣,﹣,1),∴cos<>==,∴二面角E﹣A1B﹣C的余弦值为﹣.(3)若存在一点P,使平面A1DP⊥平面A1BC,设=λ(0≤λ≤1),===(﹣2,2λ,0),=(﹣2,0,2),设平面A1DP的法向量=(a,b,c),则,令c=λ,则=(),则平面A1BC法向量=(﹣,1),∵平面A1DP⊥平面A1BC,∴=﹣3λ﹣3+λ=0,解得λ=﹣,与0≤λ≤1矛盾,∴在线段EB上存在一点P,使平面A1DP⊥平面A1BC.【点评】本题考查线线垂直的证明,考查二面角的余弦值的求法,考查线段比值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.20.设数列{bn}的前n项和为Sn,且bn=2﹣Sn;数列{an}为等差数列,且a5=9,a7=13.(Ⅰ)求数列{bn}的通项公式;(Ⅱ)若cn=bnan(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn.参考答案:【分析】(I)先计算b1,再判断{bn}为等比数列,从而得出通项公式;(II)求出an,cn,利用错位相减法求和.【解答】解:(Ⅰ)令n=1得b1=2﹣b1,∴b1=1,当n≥2时,bn﹣bn﹣1=Sn﹣1﹣Sn=﹣bn,∴bn=bn﹣1,∴{bn}是以1为首项,以为公比的等比数列,∴bn=.(Ⅱ)数列{an}的公差为d,则d=(a7﹣a5)=2,∴an=a5+(n﹣5)d=2n﹣1,∴cn=,∴Tn=1++++…+,①∴=+++…+,②①﹣②得:=1+1+++…+﹣=1+﹣=3﹣,∴Tn=6﹣.【点评】本题考查了等比数列的判断,等差数列的性质,错位相减法求和,属于中档题.21.(本小题满分12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)若,求函数的值域.参考答案:(Ⅰ).当时,或; 2分当时,. 4分∴函数的单调增区间为和;函数的单调减区间为。 6分(Ⅱ)由(Ⅰ)知;.又因为 10分所以函数的值域为 12分22.(本小题满分10分)已知实数列是公比小于1的等比数列,其中,且,成等差数列.(1)求数列的通项公式(2)若角始边在轴的正半轴,终边过点,求的值.参考答案:解:(1)设等比数列的公比为,由成等差数列,得,即,
··········2分解得:,或(舍去).······················································································4分故.································
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 翼型浮袋市场发展现状调查及供需格局分析预测报告
- 2024年度汽车销售与购销合同
- 酒具市场需求与消费特点分析
- 2024年度供应链管理合同:供应链公司与生产企业之间的合作协议
- 2024年度文化旅游产业投资与运营合同
- 运动负重用沙袋市场发展预测和趋势分析
- 2024年度旅游服务合同(景点)
- 芳香精油市场发展现状调查及供需格局分析预测报告
- 2024年度品牌授权使用合同(含区域独家授权和违约责任)
- 2024年度住宅小区车位租赁合同范本
- 2024年医师定期考核临床类人文医学知识考试题库及答案(共270题)
- 实验室危险标识制度
- GB/T 43637-2024城市光环境景观照明设施运行维护服务规范
- 电气工程及其自动化生涯发展展示
- 五年级上册简易方程练习400题及答案
- 软件技术生涯报告
- 员工安全出行知识培训
- 眼科护理中的围手术期护理与管理
- 视力残疾康复知识讲座
- 巡更管理系统技术方案
- 宠物美容师-宠物护理与造型设计
评论
0/150
提交评论