版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省十堰市新洲乡中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知x>0,y>0,x+2y+2xy=8,则x+2y的最小值是(
)A.
3
B.
4
C.
D.参考答案:B略2.已知离心率的双曲线()右焦点为F,O为坐标原点,以OF为直径的圆与双曲线C的一条渐近线交于O,A两点,若的面积为,则a的值为(
)(A)
(B)3
(C)4
(D)5参考答案:C3.已知全集=A.{4}
B.{3,4}
C.{2,3,4}
D.{1,2,3,4}参考答案:D4.对任意实数a、b、c,在下列命题中,真命题是()A.“ac>bc”是“a>b”的必要条件 B.“ac=bc”是“a=b”的必要条件C.“ac>bc”是“a>b”的充分条件 D.“ac=bc”是“a=b”的充分条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】当a=b时,一定有ac=bc.但ac=bc时,且c=0时,a,b可以不相等.即“ac=bc”是“a=b”的必要条件.【解答】解:A、C当c<0时,“ac>bc”即不是“a>b”的必要条件也不是充分条件,故A,C不成立;B、∵当a=b时∴一定有ac=bc.但ac=bc时,且c=0时,a,b可以不相等.即“ac=bc”是“a=b”的必要条件.D、当c=0时,“ac=bc”是“a=b”的充分条件不成立;故选B.5.已知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为(
)A. B.2 C. D.参考答案:A6.两定点F1(﹣3,0),F2(3,0),P为曲线=1上任意一点,则()A.|PF1|+|PF2|≥10 B.|PF1|+|PF2|≤10 C.|PF1|+|PF2|>10 D.|PF1|+|PF2|<10参考答案:B【考点】曲线与方程.【分析】根据题意,曲线=1表示的图形是图形是以A(﹣5,0),B(0,4),C(5,0),D(0,﹣4)为顶点的菱形,而满足|PF1|+|PF2|=10的点的轨迹恰好是以A、B、C、D为顶点的椭圆,由此结合椭圆的定义即可得到|PF1|+|PF2|≤10.【解答】解:∵F1(﹣3,0),F2(3,0),∴满足|PF1|+|PF2|=10的点在以F1、F2为焦点,2a=10的椭圆上可得椭圆的方程为,∵曲线=1表示的图形是图形是以A(﹣5,0),B(0,4),C(5,0),D(0,﹣4)为顶点的菱形∴菱形ABCD的所有点都不在椭圆的外部,因此,曲线=1上的点P,必定满足|PF1|+|PF2|≤10故选:B.7.我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦。若a,b,c为直角三角形的三边,其中c为斜边,则,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,,S为顶点O所对面的面积,分别为侧面的面积,则下列选项中对于满足的关系描述正确的为(
)A. B.C. D.参考答案:C【分析】作四面体,,于点,连接,结合勾股定理可得答案。【详解】作四面体,,于点,连接,如图.即故选C.【点睛】本题主要考查类比推理,解题的关键是将勾股定理迁移到立体几何中,属于简单题。8.是的A.充分不必要条件
B.必要不充分条件C.充分必要条件
D.既不充分也不必要条件参考答案:B9.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线平面,直线平面,直线∥平面,则直线∥直线”的结论显然是错误的,这是因为(
)A.大前提错误
B.小前提错误
C.推理形式错误
D.非以上错误参考答案:A略10.已知数列为等差数列,且,,则公差(
)A.-2B.-
C.
D.2参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知动点P(x,y)在椭圆C:+=1上,F为椭圆C的右焦点,若点M满足|MF|=1.且MP⊥MF,则线段|PM|的最小值为.参考答案:【考点】椭圆的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】依题意知,该椭圆的焦点F(3,0),点M在以F(3,0)为圆心,1为半径的圆上,当PF最小时,切线长PM最小,作出图形,即可得到答案.【解答】解:依题意知,点M在以F(3,0)为圆心,1为半径的圆上,PM为圆的切线,∴当PF最小时,切线长PM最小.由图知,当点P为右顶点(5,0)时,|PF|最小,最小值为:5﹣3=2.此时故答案为:【点评】本题考查椭圆的标准方程、圆的方程,考查作图与分析问题解决问题的能力,属于中档题.12.过点且在两坐标轴上的截距相等的直线的方程是
.参考答案:略13.12.利用数学归纳法证明“
”时,从“”变到“”时,左边应增乘的因式是___
______;参考答案:2(2k+1)略14.若直线与圆有公共点,则实数a的取值范围是__________。参考答案:略15.利用计算机随机模拟方法计算与所围成的区域的面积时,可以先运行以下算法步骤:第一步:利用计算机产生两个在0~1区间内的均匀随机数第二步:对随机数实施变换:得到点第三步:判断点的坐标是否满足第四步:累计所产生的点的个数,及满足的点A的个数第五步:判断是否小于(一个设定的数).若是,则回到第一步,否则,输出并终止算法.(1)点落在上方的概率计算公式是
;(2)若设定的,且输出的,则用随机模拟方法可以估计出区域的面积为
(保留小数点后两位数字).
参考答案:,
35.6416.已知不等式对一切恒成立,则实数的取值范围是
.参考答案:17.命题“”的否定是____________。
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C:x2+y2﹣2x+4y﹣4=0,直线l的斜率为1,与圆交于A、B两点.(1)若直线l经过圆C的圆心,求出直线的方程;(2)当直线l平行移动的时候,求△CAB面积的最大值以及此时直线l的方程;(3)是否存在直线l,使以线段AB为直径的圆过原点?若存在,求出直线l的方程,若不存在,说明理由.参考答案:【考点】直线与圆的位置关系.【分析】(1)圆C的圆心C(1,﹣2),半径为3,直线斜率为1,由此能求出直线l的方程.(2)设直线l的方程为:y=x+m,圆心C到直线l的距离为d,则|AB|=2,≤,当且仅当时取等号,由此能求出直线l的方程.(3)假设存在直线l:y=x+m满足题设要求,点A(x1,y1),B(x2,y2),以AB为直径的圆过原点,得x1x2+y1y2=0,联立,得2x2+2(m+1)x+m2+4m﹣4=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在直线l,使以线段AB为直径的圆过原点,并能求出其方程.【解答】解:(1)圆C的标准方程为:(x﹣1)2+(y+2)2=9,所以圆心C(1,﹣2),半径为3;又直线斜率为1,所以直线l的方程为y+2=x﹣1,即x﹣y﹣3=0.…(2)设直线l的方程为:y=x+m,圆心C到直线l的距离为d,则|AB|=2,=≤,当且仅当,d=时取等号,由d==,得m=0或m=﹣6,所以直线l的方程为y=x或y=x﹣6…(3)假设存在直线l:y=x+m满足题设要求,点A(x1,y1),B(x2,y2),以AB为直径的圆过原点,所以OA⊥OB,有=﹣1,即x1x2+y1y2=0,﹣﹣﹣﹣﹣﹣①联立,得2x2+2(m+1)x+m2+4m﹣4=0,由于△>0,得﹣3﹣3<m<3,x1+x2=﹣(m+1),,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣②所以,﹣﹣﹣﹣﹣﹣﹣﹣③由①②③解得m=1或m=﹣4,均符合△>0,故存在直线l,使以线段AB为直径的圆过原点,其方程为y=x+1或y=x﹣4.…19.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,将三角形ABD沿BD翻折,使面ABD⊥面BCD.(Ⅰ)求线段AC的长度;(Ⅱ)求证:AD⊥平面ABC.参考答案:【考点】直线与平面垂直的判定.【专题】证明题;数形结合;综合法;空间位置关系与距离;立体几何.【分析】法一:(Ⅰ)取CD中点E,连接BE,推导出四边形ABDE为正方形,BD⊥BC,从而BC⊥面ABD,由此能求出线段AC的长度.(Ⅱ)由BC⊥面ABD,得BC⊥AD,又AB⊥AD,由此能证明AD⊥平面ABC.法二:(Ⅰ)取CD中点E,连接BE,推导出四边形ABDE为正方形,BD⊥BC,取BD中点F,连接AF,CF,则AF⊥面BCD,由此能求出线段AC的长度.(Ⅱ)由勾股定理得AD⊥AC,又AB⊥AD,由此能证明AD⊥平面ABC.【解答】解法一:解:(Ⅰ)在梯形ABCD中,取CD中点E,连接BE,因为AB⊥AD,AB=AD=2,所以,又,所以四边形ABDE为正方形,即有BE=2,BE⊥CD,所以…在△BCD中,,所以BD⊥BC,翻折之后,仍有BD⊥BC…又面ABD⊥面BCD,面ABD∩面BCD=BD,BC?面BCD,所以BC⊥面ABD…又AB?面ABD,所以BC⊥AB…所以…证明:(Ⅱ)由(Ⅰ)知BC⊥面ABD,又AD?面ABD,所以BC⊥AD,…又AB⊥AD,AB∩BC=B,所以AD⊥平面ABC.…解法二:解:(Ⅰ)在梯形ABCD中,取CD中点E,连接BE,因为AB⊥AD,AB=AD=2,所以又,所以四边形ABDE为正方形,即有BE=2,BE⊥CD,所以…在△BCD中,,所以BD⊥BC,翻折之后,仍有BD⊥BC…取BD中点F,连接AF,CF,则有BD⊥AF,因为面ABD⊥面BCD,面ABD∩面BCD=BD,BD⊥AF,AF?面ABD,所以AF⊥面BCD…又CF?面BCD,AF⊥CF…因为,,所以.…证明:(Ⅱ)在△ACD中,,CD=4,AD=2,AD2+AC2=CD2,所以AD⊥AC…又AB⊥AD,AB∩AC=A,所以AD⊥平面ABC.…【点评】本题考查线段长的求法,考查线面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.20.某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下列问题:⑴写出该城市人口数y(万人)与年份x(年)的函数关系式;⑵用程序表示计算10年以后该城市人口总数的算法;⑶用程序表示如下算法:计算大约多少年以后该城市人口将达到120万人.参考答案:(1)
(2)程序如下:(3)程序如下:21.(本小题满分12分)如图,直三棱柱中,AB=1,,∠ABC=60.(Ⅰ)证明:;(Ⅱ)求二面角A——B的余弦值。
参考答案:(Ⅰ)因为三棱柱为直三棱柱所以在中………………2分由正弦定理得所以………………4分(Ⅱ)如图所示,作交于,连,由三垂线定理可得所以为所求二面角的平面角,在中,,………………8分在中,
,…………10分所以………………11分即二面角A——B的余弦值是。………12分
略22.已知函数.(1)设,求函数的极值;(2)当时,函数有两个极值点,证明:.参考答案:(1)极大值0,无极小值.(2)证明见解析【分析】(1)对函数求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 融媒体中心网络安全施工方案
- 2024年水利施工项目合作协议模板
- 2024年度设备技术支持服务费协议稿
- 电梯交易居间服务协议2024
- 2024年建筑项目承包详细协议模板
- 2024年度展览馆租赁业务协议
- 天然气工程环境影响评估方案
- 音频节目制作安全播出方案
- 2024年办公室清洁服务外包协议
- 厂区物业管理服务协议2024年范例
- 251直线与圆的位置关系(第1课时)(导学案)(原卷版)
- 2024浙江绍兴市人才发展集团第1批招聘4人(第1号)高频难、易错点500题模拟试题附带答案详解
- 幼儿园说课概述-课件
- XX有限公司人员分流方案
- 冠状动脉介入风险预测评分的临床应用
- 35导数在经济中的应用
- 苏科版(2024新版)七年级上册数学期中学情评估测试卷(含答案)
- 北师大版八年级数学上册 数学上学期作业设计勾股定理 实数 含学生版作业及答案
- 2024年“正大杯”市场调查与分析竞赛考试题库及答案
- 2024年湖南金叶烟草薄片有限责任公司招聘笔试参考题库含答案解析
- 药剂科运用PDCA循环减少门诊药房药品调剂差错PDCA成果汇报
评论
0/150
提交评论