版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省鹤壁市福田中学2022年高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1..“”是“”的
(
)
A.充要条件
B.必要而不充分条件
C.充分而不必要条件
D.既不充分也不必要条件参考答案:C2.△ABC,角A,B,C对应边分别为a,b,c,已知条件p:=,条件q:a=b,则p是q成立的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既非充分也非必要条件参考答案:A【考点】必要条件、充分条件与充要条件的判断.【分析】根据余弦定理化简得到a=b,再根据充要条件的定义即可判断.【解答】解:∵=,∴=,∴b2+c2﹣a2=a2+c2﹣b2,∴a=b,故p是q成立的充要条件,故选:A3.复数满足,则=
(
)
A.
B.
C.
D.参考答案:B略4.执行如图所示的程序框图,若输入x的值为4,则输出的结果是(
)A.1 B. C. D.参考答案:C【考点】程序框图.【专题】计算题;图表型;分类讨论;分析法;算法和程序框图.【分析】根据程序框图依次计算框图运行的x、y值,直到满足条件|y﹣x|<1终止运行,输出y值.【解答】解:由程序框图得第一次运行y=×4﹣1=1,第二次运行x=1,y=×1﹣1=﹣,第三次运行x=﹣,y=×(﹣)﹣1=﹣,此时|y﹣x|=,满足条件|y﹣x|<1终止运行,输出﹣.故选:C.【点评】本题是直到型循环结构的程序框图,解答的关键是读懂框图的运行流程,属于基础题.5.设是周期为2的奇函数,当0≤x≤1时,=,则=
(
)A.
B.
C.
D.
参考答案:A6.以下四个命题中,其中真命题的个数为()①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0;③“x<0”是“ln(x+1)<0”的充分不必要条件;④命题p:“x>3”是“x>5”的充分不必要条件.A.1 B.2 C.3 D.4参考答案:A【考点】命题的真假判断与应用.【专题】综合题;探究型;数学模型法;简易逻辑.【分析】直接由抽样方法判断①;写出特称命题否定判断②;求解对数不等式,然后利用充分必要条件的判定方法判断③;直接利用充分必要条件的判定方法判断④.【解答】解:①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,故①错误;②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均有x2+x+1≥0,故②正确;③由ln(x+1)<0,得0<x+1<1,即﹣1<x<0,∴“x<0”是“ln(x+1)<0”的必要不充分条件,故③错误;④命题p:“x>3”是“x>5”的必要不充分条件,故④错误.故选:A.【点评】本题考查命题的真假判断与应用,考查了充分必要条件的判定方法,考查了特称命题的否定,是基础题.7.用数学归纳法证明”能被9整除,要利用归纳假设证时的情况,只需展开()A.
B.
C.
D.参考答案:A8.已知点,点为坐标原点且点在圆上,且与夹角的最大值与最小值分别是
(
)A., B., C., D.,参考答案:C9.曲线y=x3-2x+l在点(1,0)处的切线方程为A.y=x-1
B.y=-x+1
C.y=2x-2
D.y=-2x+2参考答案:A10.圆锥曲线)抛物线的焦点坐标为
(
)A.
B.
C.
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.阅读如图所示的程序框图,运行相应的程序,若输入n的值为6,则输出S的值为
.
参考答案:147;
12.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为.参考答案:4【考点】利用导数求闭区间上函数的最值.【分析】先求出f′(x)=0时x的值,进而讨论函数的增减性得到f(x)的最小值,对于任意的x∈[﹣1,1]都有f(x)≥0成立,可转化为最小值大于等于0即可求出a的范围.【解答】解:由题意,f′(x)=3ax2﹣3,当a≤0时3ax2﹣3<0,函数是减函数,f(0)=1,只需f(1)≥0即可,解得a≥2,与已知矛盾,当a>0时,令f′(x)=3ax2﹣3=0解得x=±,①当x<﹣时,f′(x)>0,f(x)为递增函数,②当﹣<x<时,f′(x)<0,f(x)为递减函数,③当x>时,f(x)为递增函数.所以f()≥0,且f(﹣1)≥0,且f(1)≥0即可由f()≥0,即a?﹣3?+1≥0,解得a≥4,由f(﹣1)≥0,可得a≤4,由f(1)≥0解得2≤a≤4,综上a=4为所求.故答案为:4.13.若双曲线的两条渐近线与抛物线的准线围成的三角形面积为2,则双曲线C的离心率为_______.参考答案:【分析】求解出双曲线渐近线和抛物线准线的交点,利用三角形面积构造方程可求得,利用双曲线的关系和即可求得离心率.【详解】由双曲线方程可得渐近线方程为:由抛物线方程可得准线方程为:可解得渐近线和准线的交点坐标为:,解得:
本题正确结果:【点睛】本题考查双曲线离心率的求解问题,关键是能够利用三角形面积构造方程,得到之间关系,进而得到之间的关系.14.在极坐标系中,点到直线的距离是______.参考答案:【分析】先将点的极坐标化成直角坐标,极坐标方程化为直角坐标方程,然后用点到直线的距离来解.【详解】解:在极坐标系中,点(2,)化为直角坐标为(,1),直线ρsin(θ﹣)=1化为直角坐标方程为x﹣y+2=0,(,1)到x﹣y+2=0的距离d=,所以,点(2,)到直线ρsin(θ﹣)=1的距离为:1。故答案为:1.【点睛】本题考查直角坐标和极坐标的互化,点到直线的距离公式,体现了等价转化的数学思想.15.已知数列满足则的最小值为__________
.参考答案:略16.如图,若长方体的底面边长为2,高为4,则异面直线与AD所成角的大小是______________
参考答案:略17.已知为一次函数,且,则=_______..参考答案:设,因为,所以,,所以,所以。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)过轴上动点引抛物线的两条切线、,、为切点.(1)若切线,的斜率分别为和,求证:为定值,并求出定值;(2)求证:直线恒过定点,并求出定点坐标;
(3)当最小时,求的值.参考答案:(1),,即,即,同理,所以。联立PQ的直线方程和抛物线方程可得:,所以,所以……6分(2)因为,所以直线恒过定点…………8分(3),所以,设,所以,当且仅当取等号,即。因为因为所以…………12分19.已知函数,(1)讨论函数f(x)的单调性;(2)求证:当时,.参考答案:(1)详见解析;(2)详见解析.【分析】(1)求函数的定义域,并求出导数,由,得,并讨论与区间的位置关系进行分类讨论,结合导数的符号得出函数的单调区间;(2)将所证不等式等价转化为.证法一:先证当,证明,于是得出,再证,利用不等式的传递性得出,然后再证明当时,,于此可证明题中不等式成立;证法二:先证明,再证,由不等式的性质得出,再利用不等式的传递性可证题中不等式。【详解】(1) 当,即时,,函数在上单调递增
当,即时,由解得,由解得,∴函数在上单调递减,在上单调递增.
综上所述,当时,函数在上单调递增;当时函数在上单调递减,在上单调递增.
(2)令当时,欲证,即证,即,即证,证法一:①当时,,所以在上单调递增,即,,,令,得,则列表如下:x1—0↘极小值↗
,即,∴当时,;②当时,即证.令得可得在上单调递减,在上单调递增,,故,综上①②可知当时,成立.
证法二:先证:.设则,
∴在上单调递减,在上单调递增.,,,即,即,当且仅当时取等号.
再证:.
设,则.∴在上单调递增,则,即.∵,所以.当且仅当时取等号.又与两个不等式的等号不能同时取到,即成立,当时,成立.【点睛】本题第(1)问考查利用导数求函数的单调区间,要依据导数方程的根与定义域的位置关系进行分类讨论,第(2)问是证明函数不等式,要构造新函数,结合单调性与最值来进行证明,同时也注意放缩法、比较法、基本不等式等常用方法来证明,考查逻辑推理能力,属于难题。20.根据以下条件,分别求出双曲线的标准方程。(12分)
(1)虚轴长为12,离心率为。
(2)与双曲线-=1有共同的渐近线,且经过点M(-3,2),参考答案:(1)(2)略21.抛物线的顶点在原点,它的准线经过双曲线的一个焦点,并与双曲线的实轴垂直。已知双曲线与抛物线的交点为,求抛物线的方程和双曲线的方程。参考答案:解:根据题意可设抛物线的标准方程为,将点代人得,所以
故抛物线的标准方程为.根据题意知,抛物线的焦点(1,0)也是所求双曲线的焦点,因此可以得到
解方程组得(取正数),即双曲线的方程为
22.(本小题满分12分)设函数,.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨区域安保协作的模式与机制研究计划
- 2025年高考物理一轮复习之相互作用
- 行政后勤员工福利政策
- 银行工作总结务实高效创造价值
- 银行工作总结协同合作共同发展
- IT行业客服工作技巧
- 2024年琵琶行原文
- 2024年美术教案经典(9篇)
- 《宫腔镜的临床应用》课件
- 到期不续合同范本(2篇)
- 2024儿童身高现状报告
- 趣味知识问答100道
- 紫砂壶介绍课件
- 2023年度学校食堂食品从业人员考核试题(附答案)
- 伊朗政府与政治课件
- 上交所金桥数据中心用户手册
- 互联网金融(同济大学)智慧树知到期末考试答案章节答案2024年同济大学
- 2023-2024学年高考英语真题复习-定语从句(附解析)
- 人教版四年级数学上册数与代数专项复习卷(含答案)
- 2022年人教版六年级科学(上册)期末题及答案
- 辽师软件工程期末复习题
评论
0/150
提交评论