




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/12022北京初三一模数学汇编四边形有关计算与证明一、单选题1.(2022·北京西城·一模)如图,在平面直角坐标系xOy中,点A的坐标是,点B是函数图象上的一个动点,过点B作BC⊥y轴交函数的图象于点C,点D在x轴上(D在A的左侧),且AD=BC,连接AB,CD.有如下四个结论:①四边形ABCD可能是菱形;②四边形ABCD可能是正方形;③四边形ABCD的周长是定值;④四边形ABCD的面积是定值.所有正确结论的序号是(
)A.①② B.③④ C.①③ D.①④2.(2022·北京通州·一模)如图,已知,那么∠4的度数为(
)A. B. C. D.3.(2022·北京顺义·一模)如图,小明从A点出发,沿直线前进20米后左转30°,再沿直线前进20米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了(
)A.120米 B.200米 C.160米 D.240米二、填空题4.(2022·北京朝阳·一模)如图,是的弦,是的切线,若,则_________.5.(2022·北京通州·一模)如图所示,某种“视觉减速带”是由三个形状完全相同,颜色不同的菱形拼成,可以让平面图形产生立体图形般的视觉效果.则的度数为______.6.(2022·北京顺义·一模)如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则_______.7.(2022·北京西城·一模)如图,在△ABC中,D,E分别是AB,AC的中点,点F,G在边BC上,且DG=EF.只需添加一个条件即可证明四边形DFGE是矩形,这个条件可以是______.(写出一个即可)三、解答题8.(2022·北京朝阳·一模)如图,在矩形中,,相交于点O,,.(1)求证:四边形是菱形;(2)若,求四边形的面积.9.(2022·北京海淀·一模)在中,,.D为边BC上一动点,点E在边AC上,.点D关于点B的对称点为点F,连接AD,P为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.10.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转(),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.11.(2022·北京西城·一模)如图,在△ABC中,BA=BC,BD平分∠ABC交AC于点D,点E在线段BD上,点F在BD的延长线上,且DE=DF,连接AE,CE,AF,CF.(1)求证:四边形AECF是菱形;(2)若BA⊥AF,AD=4,,求BD和AE的长.12.(2022·北京顺义·一模)如图,在四边形ABCD中,,,垂足为O,过点D作BD的垂线交BC的延长线于点E.(1)求证:四边形ACED是平行四边形;(2)若AC=4,AD=2,,求BC的长.13.(2022·北京通州·一模)如图.在△ABC中,AB=BC,BD平分∠ABC交AC于点D.点E为AB的中点,连接DE,过点E作交CB的延长线于点F.(1)求证:四边形DEFB是平行四边形;(2)当AD=4,BD=3时,求CF的长.14.(2022·北京海淀·一模)如图,在中,,D是BC的中点,点E,F在射线AD上,且.(1)求证:四边形BECF是菱形;(2)若,,求菱形BECF的面积.
参考答案1.D【解析】【分析】根据题意可得四边形ABCD是平行四边形,设点,则,根据BC=AB,可得关于a的方程,有解,可得①正确;若四边形ABCD是正方形,则AB⊥x轴,AB⊥BC,BC=AB,可得到点B,C的坐标,从而得到AB≠BC,可得②错误;取a的不同的数值,可得③错误;根据平行四边的面积,可得平行四边的面积等于8,可得④正确,即可求解.【详解】解:如图,∵BC⊥y轴,∴BC∥AD,∵AD=BC,∴四边形ABCD是平行四边形,设点,则,①若四边形ABCD是菱形,则BC=AB,∴,∵点A的坐标是,∴,∴,解得:,该方程有解,∴四边形ABCD可能是菱形,故①正确;②若四边形ABCD是正方形,则AB⊥x轴,AB⊥BC,BC=AB,∵点A的坐标是,∴点B的横坐标为5,∵点B是函数图象上,∴点B的纵坐标为,∴∵BC⊥y轴,∴点C的纵坐标为,∵点C是函数的图象的一点,∴点C的横坐标为,∴此时,∴四边形ABCD不可能是正方形,故②错误;③若a=1时,点,则,∴AD=BC=7,,∴此时四边形ABCD的周长为,若a=2时,点,则,∴AD=BC=4,,∴此时四边形ABCD的周长为,∴四边形ABCD的周长不是定值,故③错误;∵,,∴AD=,点B到x轴的距离为a,∴四边形ABCD的面积为,∴四边形ABCD的面积是定值,故④正确;∴正确的有①④.故选:D【点睛】本题主要考查了反比例函数的图象与性质,平行四边形的性质,菱形的判定,正方形的判定,平行四边形的周长、面积公式,利用数形结合思想解答是解题的关键.2.B【解析】【分析】根据四边形的外角和等于360°即可求解.【详解】解:∵,∴∠4=120°故选B.【点睛】本题考查了多边形的外角和公式,熟练掌握多边形是外角和公式是解题的关键.3.D【解析】【分析】由题意可知小华走出了一个正多边形,根据正多边形的外角和公式可求解.【详解】已知多边形的外角和为360°,而每一个外角为30°,可得多边形的边数为360°÷30°=12,所以小明一共走了:12×20=240米.故答案选:D.【点睛】本题考查多边形内角与外角,熟记公式是关键.4.60【解析】【分析】因为是的切线,由切线的性质得出PA⊥OA,PB⊥OB,得出∠PAO=∠PBO=90°,由圆周角定理可得∠AOB=2∠C=120º.,再由四边形内角和等于360°,即可得出结果.【详解】解:如图,连接OA,OB,∵是的切线,∴PA⊥OA,PB⊥OB∴∠PAO=∠PBO=90°∵,∴∠AOB=2∠C=120º,∵四边形内角和等于360º.∴在四边形AOBP中,∠P=360º-90º-90º-120º=60º.故答案为:60.【点睛】此题考查了切线的性质、圆周角定理以及四边形内角和定理;解题的关键是利用切线的性质和圆周角定理结合四边形内角和等于360º求角.5.【解析】【分析】如图是由三个形状完全相同的菱形拼成的一个平面图形,根据平面图形的镶嵌的定义可知,以点A为顶点的三个角之和为,根据题意又可知这三个角相等,所以,然后再利用菱形对角相等的性质即可得到答案.【详解】解:∵如图是由三个菱形拼成的一个平面图形;∴以点A为顶点的三个角之和为,又∵这三个菱形的形状完全相同;∴以点A为顶点的三个角相等,∴∴.故答案为:【点睛】本题考查了平面图形的镶嵌和菱形的性质.解答本题的关键是理解平面图形的镶嵌的定义.6.【解析】【分析】根据题意构造并证明,通过全等得到,再结合矩形的性质、旋转的性质,及可求解;【详解】如图,延长DH交EF于点k,∵H是的中点又则故答案为:【点睛】本题主要考查了矩形的性质、三角形的全等证明,掌握相关知识并结合旋转的性质正确构造全等三角形是解题的关键.7.或【解析】【分析】由DE是中位线得出,又DG=EF表示的是对角线相等,根据:对角线相等的平行四边形是矩形;增加条件使四边形DFGE是平行四边形即可.【详解】解:分别是的中点,,当时,四边形DFGE是平行四边形,,四边形DFGE是矩形;当时,四边形DFGE是平行四边形,,四边形DFGE是矩形;故答案为:或.【点睛】本题考查矩形的判定、平行四边形的判定,根据:对角线相等的平行四边形是矩形;准确分析出平行四边形的判定是解题关键.8.(1)见解析(2)【解析】【分析】(1)根据矩形的性质得出OA=OB,进而利用菱形的判定解答即可;(2)根据菱形的性质及面积公式,解直角三角形即可求得.(1)证明:,四边形AEBO是平行四边形又四边形ABCD是矩形,,四边形AEBO是菱形(2)解:如图:连接EO,交AB于点F四边形ABCD是矩形,,又是等边三角形,四边形AEBO是菱形,四边形的面积为:【点睛】本题考查了矩形的性质,菱形的判定与性质,等边三角形的判定与性质,解直角三角形,作出辅助线是解决本题的关键.9.(1),(2)成立,证明见解析【解析】【分析】(1)由题意知三点重合,则,,含30°的直角三角形中,由,可知,是的中位线,有,,,然后求出比值即可;(2)如图2,连接,作于,轴,过作交于,交于,由题意知,是的中位线,,是等边三角形,四边形是矩形,设,,则,,,,,,,,,,在中,由勾股定理得,求出用表示的的值,在中,由勾股定理得,求出用表示的的值,在中,由勾股定理得,求出用表示的的值,求出可得的值,进而可得的值,根据与的数量关系判断与的位置关系即可.(1)解:,.理由如下:由题意知三点重合∴,∵∴,∵∴∴为线段的中点∵是中点∴是的中位线∴,∴∴.(2)解:,的关系仍成立.证明:如图2,连接,作于,轴,过作交于,交于,由题意知,是的中位线,,是等边三角形,四边形是矩形,设,∴,,,,,,,,,在中,由勾股定理得在中,由勾股定理得在中,由勾股定理得∴∴∵∴∴.【点睛】本题考查了含30°的直角三角形,中位线,勾股定理及勾股定理的逆定理,等边三角形、矩形的判定与性质等知识.解题的关键在于表示出与的长度.10.(1)135,(2)①作图见解析,45°;②【解析】【分析】(1)过点E作于点K,由正方形的性质、旋转的性质及角平分线的定义可得,再利用等腰三角形的性质和解直角三角形可求出,,继而可证明,便可求解;(2)①根据题意作图即可;由正方形的性质、旋转的性质可得,再根据三角形内角和定理及等腰三角形的性质求出,即可求解;②过点B作垂足为H,由等腰三角形的性质得到,再证明即可得到,再推出为等腰直角三角形,即可得到三者之间的关系.(1)过点E作于点K四边形ABCD是正方形BE平分∠ABC,AB=4,将线段BA绕点B旋转(),得到线段BE,,四边形ABCE的面积为故答案为:135,(2)①作图如下四边形ABCD是正方形由旋转可得,②,理由如下:如图,过点B作垂足为H,∠EBC的平分线BF交EC于点G为等腰直角三角形即【点睛】本题属于四边形和三角形的综合题目,涉及正方形的性质、旋转的性质、角平分线的定义、等腰三角形的性质和判定、解直角三角形、全等三角形的判定与性质、三角形的内角和定理等,灵活运用上述知识点是解题的关键.11.(1)见解析(2)【解析】【分析】(1)由等腰三角形的性质得到,再由菱形的判定定理即可得到结论;(2)先求出,由勾股定理得出BD的长度,解直角三角形求出AF的长度,再由菱形的性质即可求解.(1)BA=BC,BD平分∠ABCDE=DF四边形AECF是菱形;(2),BA⊥AF,BA=BCAD=4在中,四边形AECF是菱形【点睛】本题考查了等腰三角形的性质、菱形的判定和性质、勾股定理及利用同角的三角函数关系求值,熟练掌握知识点是解题的关键.12.(1)证明见解析(2)BC的长为【解析】【分析】(1)先判定,再根据题中所给的条件即可利用平行四边形判定定理证出;(2)根据三角函数值设,,利用平行四边形性质得到平行及线段相等,从而根据确定的相似比代值求解即可.(1)证明:,,,,在四边形ABCD中,,四边形ACED是平行四边形;(2)解:在中,,设,,在中,,,,,,即,解得(舍弃)或,.【点睛】本题考查了平行线的判定、平行四边形的判定与性质、相似三角形的判定与性质、锐角三角函数定义等知识,熟练掌握平行四边形的判定与性质是解题的关键.13.(1)证明见解析(2)【解析】【分析】(1)根据题目所给条件得到三角形是等腰三角形,由角平分线的条件,根据“三线合一”的知识,从而得到点D为中点,再利用中位线的性质,从而得到,再根据平行四边形判定定理即可证明;(2)根据等腰三角形“三线合一”的知识,从而得到为直角三角形,根据题目所给条件,得出的长,再根据直角三角形斜边中线的性质以及平行四边形的性质,得到的长度,从而得到最后结果.(1)证明:∵在△ABC中,AB=BC,∴△ABC为等腰三角形,∴,又∵BD为∠ABC的角平分线,∴,又∵,∴,∴,∴D为中点,又∵点E为AB的中点,∴为中位线,∴,即,又∵,∴四边形DEFB是平行四边形.(2)解:∵由(1)得,∴,又∵点E为AB的中点,∴为的中线,∴,∵在中,AD=4,BD=3,∴,∴,又∵四边形DEFB是平行四边形,∴,又∵,∴.【点睛】本题考察了三角形的中位线,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 脑瘫诊疗知识理论考核试题
- 加强文化修养搞好廉洁自律
- 合作合同管理流程
- 专项法律顾问合同书参考样本
- 2025出口合同范本
- 上海企业股权转让合同2025
- 市场推广服务合同范本
- 2025标准商业办公设备采购合同范本
- 2025室内设计项目服务合同
- 2025市场经理聘请合同样本
- DRG疾病分组培训
- 《跨境电商平台运营》课件-任务3产品定价
- 体彩店雇佣合同
- 幼儿园警察安全课示范课
- 2024年重庆市初中学业水平考试生物试卷含答案
- 《工业机器人技术基础 》课件-第六章 工业机器人控制系统
- 皮尔逊Ⅲ型曲线模比系数计算表
- MES制造执行系统(MES)系统 用户需求说明书
- 五一节前安全培训
- 高级考评员职业技能鉴定考试题及答案
- 建筑工程住宅水泥制品排气道系统应用技术规程
评论
0/150
提交评论