版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
数据科学与机器学习Python语法分析Python基础术语数据分析中常用的数据类型数据分析中常用的循环函数数据分析中常用的库010203041.Python基础术语
1.必须知道的两组Python基础术语在内存中创建了一个值为4的整型数据在内存中创建了一个名为a的变量,并把它指向4例如下图代码,“=”的作用就是赋值,同时Python会自动识别数据类型:2.数据分析中常用的循环函数
for函数是一个常见的循环函数for函数在Python数据分析中经常被应用,因为数据采集经常需要遍历每一个网页,以获取信息,所以构建完整而正确的网页链接十分关键。3.数据分析中常用的数据类型在初级的数据分析过程中,有三种数据类型是很常见的:列表list(Python内置)字典dic(Python内置)DataFrame(工具包pandas下的数据类型,需要import
pandas才能调用)列表(list):字典(dict):DataFrame:DataFrame可以简单理解为Excel里的表格格式。导入pandas包后,字典和列表都可以转化为DataFrame,以上面的字典为例,转化为DataFrame是这样的:4.数据分析中常用的库Python是数据处理常用工具,可以处理数量级从几K至几T不等的数据,具有较高的开发效率和可维护性,还具有较强的通用性和跨平台性。Python可用于数据分析,但其单纯依赖Python本身自带的库进行数据分析还是具有一定的局限性的,需要安装第三方扩展库来增强分析和挖掘能力。Python数据分析需要安装的第三方扩展库有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Learn、Keras、Gensim、Scrapy等,以下是千锋武汉Python培训老师对该第三方扩展库的简要介绍:4.1PandasPandas是Python强大、灵活的数据分析和探索工具,包含Series、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。Pandas是Python的一个数据分析包,Pandas最初被用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。它建立在Numpy之上,使得Numpy应用变得简单。带有坐标轴的数据结构,支持自动或明确的数据对齐。这能防止由于数据结构没有对齐,以及处理不同来源、采用不同索引的数据而产生的常见错误。使用Pandas更容易处理丢失数据。
合并流行数据库(如:基于SQL的数据库)
Pandas是进行数据清晰/整理的最好工具。4.2NumpyPython没有提供数组功能,Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是SciPy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。Numpy的功能:N维数组,一种快速、高效使用内存的多维数组,他提供矢量化数学运算。可以不需要使用循环,就能对整个数组内的数据进行标准数学运算。非常便于传送数据到用低级语言编写(C\C++)的外部库,也便于外部库以Numpy数组形式返回数据。Numpy不提供高级数据分析功能,但可以更加深刻的理解Numpy数组和面向数组的计算。4.3MatplotlibMatplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。
使用Matplotlib,可以定制所做图表的任一方面。他支持所有操作系统下不同的GUI后端,并且可以将图形输出为常见的矢量图和图形测试,如PDFSVGJPGPNGBMPGIF.通过数据绘图,我们可以将枯燥的数字转化成人们容易接收的图表。
Matplotlib是基于Numpy的一套Python包,这个包提供了吩咐的数据绘图工具,主要用于绘制一些统计图形。
Matplotlib有一套允许定制各种属性的默认设置,可以控制Matplotlib中的每一个默认属性:图像大小、每英寸点数、线宽、色彩和样式、子图、坐标轴、网个属性、文字和文字属性。4.4KerasKeras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。4.5Scikit-LearnScikit-Learn是Python常用的机器学习工具包,提供了完善的机器学习工具箱,支持数据预处理、分类、回归、聚类、预测和模型分析等强大机器学习库,其依赖于Numpy、Scipy和Matplotlib等。Scikit-Learn是基于Python机器学习的模块,基于BSD开源许可证。
Scikit-Learn的安装需要NumpyScopyMatplotlib等模块,Scikit-Learn的主要功能分为六个部分,分类、回归、聚类、数据降维、模型选择、数据预处理。Scikit-Learn自带一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的bostonhouseprices数据集。该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。Scikit-Learn建立在Scipy之上,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度人工智能产业投资转借款合作协议模板3篇
- 国防建设知识
- 二零二五年度个人知识产权侵权纠纷授权委托书3篇
- 二零二五年度商场消防安全责任协议书3篇
- 二零二五年度城市停车场信息化建设承包协议3篇
- 二零二五年办公楼智能安防与保洁服务合同3篇
- 二零二五版海洋石油钻井平台外派海员聘用合同范本3篇
- 二零二五年度商品房团购项目合作代理协议3篇
- 二零二五年度高校研究生学术交流活动合作协议3篇
- 艺术地坪施工方案
- 2024年湖北省武汉市中考英语真题(含解析)
- 三相分离器原理及操作
- 新教科版五年级下册科学全册每节课后练习+答案(共28份)
- 货物验收单表格模板
- 葫芦岛尚楚环保科技有限公司医疗废物集中处置项目环评报告
- 600字A4标准作文纸
- GB/T 18015.2-2007数字通信用对绞或星绞多芯对称电缆第2部分:水平层布线电缆分规范
- 2007年迈腾3.2发动机维修手册
- 选择性必修二课本活动题答案(教参) 高中地理湘教版(2019)选择性必修二
- 《运动治疗技术》考试题库(学生用)
- 2023年上海健康医学院单招职业适应性测试笔试题库及答案解析
评论
0/150
提交评论