版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1ChapterTwoGraphicalandTabularDescriptiveTechniques2.2Introduction&Re-cap…Descriptivestatisticsinvolvesarranging,summarizing,andpresentingasetofdatainsuchawaythatusefulinformationisproduced.Itsmethodsmakeuseofgraphicaltechniquesandnumericaldescriptivemeasures(suchasaverages)tosummarizeandpresentthedata.DataStatisticsInformation2.3Populations&SamplesThegraphical&tabularmethodspresentedhereapplytobothentirepopulationsandsamplesdrawnfrompopulations.PopulationSampleSubset2.4Definitions…Avariableissomecharacteristicofapopulationorsample. E.g.studentgrades. Typicallydenotedwithacapitalletter:X,Y,Z…Thevalues
ofthevariablearetherangeofpossiblevaluesforavariable. E.g.studentmarks(0..100)Dataaretheobservedvaluesofavariable. E.g.studentmarks:{67,74,71,83,93,55,48}2.5TypesofData&InformationData(atleastforpurposesofStatistics)fallintothreemaingroups:IntervalDataNominalDataOrdinalData2.6IntervalData…Interval
data
•Realnumbers,i.e.heights,weights,prices,etc. •Alsoreferredtoasquantitativeornumerical.ArithmeticoperationscanbeperformedonIntervalData,thusitsmeaningfultotalkabout2*Height,orPrice+$1,andsoon.2.7NominalData…NominalData •The
valuesofnominaldataarecategories. E.g.responsestoquestionsaboutmaritalstatus,codedas: Single=1,Married=2,Divorced=3,Widowed=4Thesedataarecategoricalinnature;arithmeticoperationsdon’tmakeanysense(e.g.doesWidowed÷2=Married?!)Nominaldataarealsocalledqualitativeorcategorical.2.8OrdinalData…Ordinal
Dataappeartobecategoricalinnature,buttheirvalueshaveanorder;arankingtothem: E.g.Collegecourseratingsystem:poor=1,fair=2,good=3,verygood=4,excellent=5
Whileitsstillnotmeaningfultodoarithmeticonthisdata(e.g.does2*fair=verygood?!),wecansaythingslike:excellent>poororfair<verygoodThatis,orderismaintainednomatterwhatnumericvaluesareassignedtoeachcategory.2.9CalculationsforTypesofDataAsmentionedabove,•
Allcalculationsarepermittedonintervaldata.•
Onlycalculationsinvolvingarankingprocessareallowedforordinaldata.•Nocalculationsareallowedfornominaldata,savecountingthenumberofobservationsineachcategory.Thislendsitselftothefollowing“hierarchyofdata”…2.10HierarchyofData…Interval Valuesarerealnumbers. Allcalculationsarevalid. Datamaybetreatedasordinalornominal.Ordinal Valuesmustrepresenttherankedorderofthedata. Calculationsbasedonanorderingprocessarevalid. Datamaybetreatedasnominalbutnotasinterval.Nominal
Valuesarethearbitrarynumbersthatrepresentcategories. Onlycalculationsbasedonthefrequenciesofoccurrencearevalid. Datamaynotbetreatedasordinalorinterval.2.11Graphical&TabularTechniquesforNominalData…Theonlyallowablecalculationonnominaldataistocountthefrequencyofeachvalueofthevariable.Wecansummarizethedatainatablethatpresentsthecategoriesandtheircountscalledafrequencydistribution.Arelativefrequencydistributionliststhecategoriesandtheproportionwithwhicheachoccurs.2.12Example2.1LightBeerPreferenceSurveyIn2006totallightbeersalesintheUnitedStateswasapproximately3milliongallonsWiththislargeamarketbreweriesoftenneedtoknowmoreaboutwhoisbuyingtheirproduct.Themarketingmanagerofamajorbrewerywantedtoanalyzethelightbeersalesamongcollegeanduniversitystudentswhododrinklightbeer.Arandomsampleof285graduatingstudentswasaskedtoreportwhichofthefollowingistheirfavoritelightbeer.2.13Example2.11.BudweiserLight2.BuschLight3.CoorsLight4.MichelobLight5.MillerLite6.NaturalLight7.OtherbrandTheresponseswererecordedusingthecodes.Constructafrequencyandrelativefrequencydistributionforthesedataandgraphicallysummarizethedatabyproducingabarchartandapiechart.
2.14Example2.1Xm02-01*
2.15FrequencyandRelativeFrequencyDistributions2.16NominalData(Frequency)BarChartsareoftenusedtodisplayfrequencies…2.17NominalData(RelativeFrequency)PieChartsshowrelativefrequencies…2.18NominalDataItallthesameinformation,(basedonthesamedata).Justdifferentpresentation.2.19Example2.2Table2.3liststhetotalenergyconsumptionoftheUnitedStatesfromallsourcesin2005.Tomakeiteasiertoseethedetailsthetablemeasurestheheatcontentinmetrictons(1,000kilograms)ofoilequivalent.Forexample,theUnitedStatesburnedanamountofcoalandcoalproductsequivalentto545,259metrictonsofoil.Useanappropriategraphicaltechniquetodepictthesefigures.2.20Table2.3 Xm02-02*Non-RenewableEnergySourcesHeatContentCoal&coalproducts 545,258 Oil 903,440 NaturalGas 517,881 Nuclear 209,890 RenewableEnergySourcesHydroelectric 18,251 SolidBiomass 52,473 Other(Liquidbiomass,geothermal, 20,533 solar,wind,andtide,wave,&Ocean) Total 2,267,7262.21Example2.2
2.22GraphicalTechniquesforIntervalDataThereareseveralgraphicalmethodsthatareusedwhenthedataareinterval(i.e.numeric,non-categorical).Themostimportantofthesegraphicalmethodsisthehistogram.Thehistogramisnotonlyapowerfulgraphicaltechniqueusedtosummarizeintervaldata,butitisalsousedtohelpexplainprobabilities.2.23Example2.4Followingderegulationoftelephoneservice,severalnewcompanieswerecreatedtocompeteinthebusinessofprovidinglong-distancetelephoneservice.Inalmostallcasesthesecompaniescompetedonpricesincetheserviceeachofferedissimilar.Pricingaserviceorproductinthefaceofstiffcompetitionisverydifficult.Factorstobeconsideredincludesupply,demand,priceelasticity,andtheactionsofcompetitors.Long-distancepackagesmayemployper-minutecharges,aflatmonthlyrate,orsomecombinationofthetwo.Determiningtheappropriateratestructureisfacilitatedbyacquiringinformationaboutthebehaviorsofcustomersandinparticularthesizeofmonthlylong-distancebills.2.24Example2.4Aspartofalargerstudy,along-distancecompanywantedtoacquireinformationaboutthemonthlybillsofnewsubscribersinthefirstmonthaftersigningwiththecompany.Thecompany’smarketingmanagerconductedasurveyof200newresidentialsubscriberswhereinthefirstmonth’sbillswererecorded.ThesedataarestoredinfileXm02-04.Thegeneralmanagerplannedtopresenthisfindingstoseniorexecutives.Whatinformationcanbeextractedfromthesedata?2.25Example2.4InExample2.1wecreatedafrequencydistributionofthe5categories.Inthisexamplewealsocreateafrequencydistributionbycountingthenumberofobservationsthatfallintoaseriesofintervals,calledclasses.I’llexplainlaterwhyIchosetheclassesIusebelow.2.26Example2.4Wehavechoseneightclassesdefinedinsuchawaythateachobservationfallsintooneandonlyoneclass.Theseclassesaredefinedasfollows:
Classes Amountsthatarelessthanorequalto15 Amountsthataremorethan15butlessthanorequalto30 Amountsthataremorethan30butlessthanorequalto45 Amountsthataremorethan45butlessthanorequalto60 Amountsthataremorethan60butlessthanorequalto75 Amountsthataremorethan75butlessthanorequalto90 Amountsthataremorethan90butlessthanorequalto105 Amountsthataremorethan105butlessthanorequalto1202.27Example2.42.28Interpret…abouthalf(71+37=108)ofthebillsare“small”,i.e.lessthan$30Thereareonlyafewtelephonebillsinthemiddlerange.(18+28+14=60)÷200=30%i.e.nearlyathirdofthephonebillsare$90ormore.2.29BuildingaHistogram…CollecttheDataCreateafrequencydistributionforthedata… How? a)Determinethenumberofclassestouse… How? Refertotable2.6:With200observations,weshouldhavebetween7&10classes…Alternative,wecoulduseSturges’formula:Numberofclassintervals=1+3.3log(n)2.30BuildingaHistogram…CollecttheDataCreateafrequencydistributionforthedata… How? a)Determinethenumberofclassestouse.[8] b)Determinehowlargetomakeeachclass… How? Lookattherangeofthedata,thatis,
Range=LargestObservation–SmallestObservation Range=$119.63–$0=$119.63
Theneachclasswidthbecomes: Range÷(#classes)=119.63÷8≈152.31BuildingaHistogram…
2.32BuildingaHistogram…
2.33ShapesofHistograms…SymmetryAhistogramissaidtobesymmetricif,whenwedrawaverticallinedownthecenterofthehistogram,thetwosidesareidenticalinshapeandsize:FrequencyVariableFrequencyVariableFrequencyVariable2.34ShapesofHistograms…SkewnessAskewedhistogramisonewithalongtailextendingtoeithertherightortheleft:FrequencyVariableFrequencyVariablePositivelySkewedNegativelySkewed2.35ShapesofHistograms…ModalityAunimodalhistogramisonewithasinglepeak,whileabimodalhistogramisonewithtwopeaks:FrequencyVariableUnimodalFrequencyVariableBimodalAmodalclassistheclasswiththelargestnumberofobservations2.36ShapesofHistograms…BellShapeAspecialtypeofsymmetric
unimodalhistogramisonethatisbellshaped:FrequencyVariableBellShapedManystatisticaltechniquesrequirethatthepopulationbebellshaped.Drawingthehistogramhelpsverifytheshapeofthepopulationinquestion.2.37HistogramComparison…Compare&contrastthefollowinghistogramsbasedondatafromEx.2.6&Ex.2.7:Thetwocourses,BusinessStatisticsandMathematicalStatisticshaveverydifferenthistograms…unimodalvs.bimodalspreadofthemarks(narrower|wider)2.38Stem&LeafDisplay…Retainsinformationaboutindividualobservationsthatwouldnormallybelostinthecreationofahistogram.Spliteachobservationintotwoparts,astemandaleaf:e.g.Observationvalue:42.19Thereareseveralwaystosplititup…Wecouldsplititatthedecimalpoint:Orsplititatthe“tens”position(whileroundingtothenearestintegerinthe“ones”position)StemLeaf4219422.39Stem&LeafDisplay…Continuethisprocessforalltheobservations.Then,usethe“stems”fortheclassesandeachleafbecomespartofthehistogram(basedonExample2.4data)asfollows…Stem Leaf
0 0000000000111112222223333345555556666666778888999999
1 000001111233333334455555667889999
2 0000111112344666778999
3 001335589
4 124445589
5 33566
6 3458
7 022224556789
8 334457889999
9 00112222233344555999
10 001344446699
11 124557889Thus,westillhaveaccesstoouroriginaldatapoint’svalue!2.40HistogramandStem&Leaf…Comparetheoverallshapesofthefigures…2.41Ogive…(pronounced“Oh-jive”)isagraphof acumulative
frequencydistribution.Wecreateanogiveinthreesteps…First,fromthefrequencydistributioncreatedearlier,calculaterelativefrequencies:RelativeFrequency=#ofobservationsinaclass Total#ofobservations2.42RelativeFrequencies…Forexample,wehad71observationsinourfirstclass(telephonebillsfrom$0.00to$15.00).Thus,therelativefrequencyforthisclassis71÷200(thetotal#ofphonebills)=0.355(or35.5%)2.43Ogive…Isagraphofacumulative
frequencydistribution.Wecreateanogiveinthreesteps…1)Calculaterelativefrequencies.2)Calculatecumulativerelativefrequenciesbyaddingthecurrentclass’relativefrequencytothepreviousclass’cumulativerelativefrequency.(Forthefirstclass,itscumulativerelativefrequencyisjustitsrelativefrequency)2.44CumulativeRelativeFrequencies…firstclass…nextclass:.355+.185=.540lastclass:.930+.070=1.00::2.45Ogive…Isagraphofacumulative
frequencydistribution.1)Calculaterelativefrequencies.2)Calculatecumulativerelativefrequencies.3)Graphthecumulativerelativefrequencies…2.46Ogive…Theogivecanbeusedtoanswerquestionslike:Whattelephonebillvalueisatthe50thpercentile?(ReferalsotoFig.2.13inyourtextbook)“around$35”2.47DescribingTimeSeriesDataObservationsmeasuredatthesamepointintimearecalledcross-sectionaldata.Observationsmeasuredatsuccessivepointsintimearecalledtime-seriesdata.Time-seriesdatagraphedonalinechart,whichplotsthevalueofthevariableontheverticalaxisagainstthetimeperiodsonthehorizontalaxis.2.48Example2.8Werecordedthemonthlyaverageretailpriceofgasolinesince1978.
Xm02-08Drawalinecharttodescribethesedataandbrieflydescribetheresults.2.49Example2.82.50Example2.9PriceofGasolinein1982-84ConstantDollarsXm02-09RemovetheeffectofinflationinExample2.8todeterminewhethergasolinepricesarehigherthantheyhavebeeninthepastafterremovingtheeffectofinflation.2.51Example2.92.52RelationshipbetweenTwoNominalVariables…Sofarwe’velookedattabularandgraphicaltechniquesforonevariable(eithernominalorintervaldata).Across-classificationtable(orcross-tabulationtable)isusedtodescribetherelationshipbetweentwonominalvariables.Across-classificationtableliststhefrequencyofeachcombinationofthevaluesofthetwovariables…2.53Example2.10InamajorNorthAmericancitytherearefourcompetingnewspapers:thePost,GlobeandMail,Sun,andStar.Tohelpdesignadvertisingcampaigns,theadvertisingmanagersofthenewspapersneedtoknowwhichsegmentsofthenewspapermarketarereadingtheirpapers.Asurveywasconductedtoanalyzetherelationshipbetweennewspapersreadandoccupation.2.54Example2.10Asampleofnewspaperreaderswasaskedtoreportwhichnewspapertheyread:GlobeandMail(1)Post(2),Star(3),Sun(4),andtoindicatewhethertheywereblue-collarworker(1),white-collarworker(2),orprofessional(3).TheresponsesarestoredinfileXm02-10.2.55Example2.10Bycountingthenumberoftimeseachofthe12combinationsoccurs,weproducedtheTable2.9. OccupationNewspaper BlueCollar WhiteCollar Professional TotalG&M 27 29 33 89Post 18 43 51 112Star 38 21 22 81Sun 37 15 20 72Total 120 108 126 354
2.56Example2.10Ifoccupationandnewspaperarerelated,thentherewillbedifferencesinthenewspapersreadamongtheoccupations.Aneasywaytoseethisistocovertthefrequenciesineachcolumntorelativefrequenciesineachcolumn.Thatis,computethecolumntotalsanddivideeachfrequencybyitscolumntotal. OccupationNewspaper BlueCollar WhiteCollar Professional G&M 27/120=.23 29/108=.27 33/126=.26 Post 18/120=.15 43/108=.40 51/126=.40 Star 38/120=.32 21/108=.19 22/126=.17 Sun 37/120=.31 15/108=.14 20/126=.16 2.57Example2.10Interpretation:Therelativefrequenciesinthecolumns2&3aresimilar,buttherearelargedifferencesbetweencolumns1and2andbetweencolumns1and3.Thistellsusthatbluecollarworkerstendtoreaddifferentnewspapersfrombothwhitecollarworkersandprofessionalsandthatwhitecollarandprofessionalsarequitesimilarintheirnewspaperchoice.dissimilarsimilar2.58GraphingtheRelationshipBetweenTwoNominalVariables…Usethedatafromthecross-classificationtabletocreatebarcharts…ProfessionalstendtoreadtheGlobe&MailmorethantwiceasoftenastheStarorSun…2.59GraphingtheRelationshipBetweenTwoIntervalVariables…Movingfromnominaldatatointervaldata,wearefrequentlyinterestedinhowtwointervalvariablesarerelated.Toexplorethisrelationship,weemployascatterdiagram,whichplotstwovariablesagainstoneanother.TheindependentvariableislabeledXandisusuallyplacedonthehorizontalaxis,whiletheother,dependentvariable,Y,ismappedtotheverticalaxis.2.60Example2.12Arealestateagentwantedtoknowtowhatextentthesellingpriceofahomeisrelatedtoitssize.Toacquirethisinformationhetookasampleof12homesthathadrecentlysold,recordingthepriceinthousandsofdollarsandthesizeinhundredsofsquarefeet.Thesedataarelistedintheaccompanyingtable.Useagraphicaltechniquetodescribetherelationshipbetweensizeandprice.Xm02-12Size 231826202214332823202718Price 3152293552612342163083062892042651952.61Example2.12Itappearsthatinfactthereisarelationship,thatis,thegreaterthehousesizethegreaterthesellingp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024人力资源服务服务合同
- 2024年度品牌策划与推广合同:新型快消品市场布局
- 2024年度人力资源服务外包合同的义务与责任2篇
- 2024合同范例,工程廉政协议
- 2024年度桥梁建设施工安全责任合同3篇
- 热处理质量提升合同
- 2024年度人力资源优化咨询合同2篇
- 施工脚手架租赁协议
- 岩棉板供应合同
- 2024年度电气产品知识产权许可合同3篇
- 签派员执照考试题库汇总-8签派和实践应用
- 混凝土用砂石质量及检验方法标准课件
- 某低密度住宅案例分析
- 销售人员十大军规课件
- (完整)高位水池施工方案改
- 创伤外科跟骨骨折诊疗指南
- 中班数学活动:认识数字8课件
- 人教版四年级上册数学 总复习 图形与几何 教案(教学设计)
- 金融工程学(第五版)第5章互换工具及其配置
- 新闻热点评报课件
- 学院学科建设工作会议发言稿
评论
0/150
提交评论