版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
12.1.1平方根(第一课时)◆随堂检测1、若x2=a,则叫的平方根,如16的平方根是,的平方根是2、表示的平方根,表示12的3、196的平方根有个,它们的和为4、下列说法是否正确?说明理由(1)0没有平方根;(2)—1的平方根是;(3)64的平方根是8;(4)5是25的平方根;(5)5、求下列各数的平方根(1)100(2)(3)1.21(4)◆典例分析例若与是同一个数的平方根,试确定m的值◆课下作业●拓展提高一、选择1、如果一个数的平方根是a+3和2a-15,那么这个数是()A、49B、441C、7或21D、49或4412、的平方根是()A、4B、2C、-2D、二、填空3、若5x+4的平方根为,则x=4、若m—4没有平方根,则|m—5|=5、已知的平方根是,3a+b-1的平方根是,则a+2b的平方根是三、解答题6、a的两个平方根是方程3x+2y=2的一组解(1)求a的值(2)的平方根7、已知+∣x+y-2∣=0求x-y的值●体验中考1、(09河南)若实数x,y满足+=0,则代数式的值为2、(08咸阳)在小于或等于100的非负整数中,其平方根是整数的共有个3、(08荆门)下列说法正确的是()A、64的平方根是8B、-1的平方根是C、-8是64的平方根D、没有平方根◆随堂检测1、的算术平方根是;的算术平方根_____2、一个数的算术平方根是9,则这个数的平方根是3、若有意义,则x的取值范围是,若a≥0,则04、下列叙述错误的是()A、-4是16的平方根B、17是的算术平方根C、的算术平方根是D、0.4的算术平方根是0.02◆典例分析例:已知△ABC的三边分别为a、b、c且a、b满足,求c的取值范围分析:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围◆课下作业●拓展提高一、选择1、若,则的平方根为()A、16B、C、D、2、的算术平方根是()A、4B、C、2D、二、填空3、如果一个数的算术平方根等于它的平方根,那么这个数是4、若+=0,则=三、解答题5、若a是的平方根,b是的算术平方根,求+2b的值6、已知a为的整数部分,b-1是400的算术平方根,求的值●体验中考AUTONUM\*Arabic.(2009年山东潍坊)一个自然数的算术平方根为,则和这个自然数相邻的下一个自然数是()A. B. C. D.2、(08年泰安市)的整数部分是;若a<<b,(a、b为连续整数),则a=,b=3、(08年广州)如图,实数、在数轴上的位置,化简=4、(08年随州)小明家装修用了大小相同的正方形瓷砖共66块铺成10.56米2的房间,小明想知道每块瓷砖的规格,请你帮助算一算.12.1.2立方根◆随堂检测1、若一个数的立方等于—5,则这个数叫做—5的,用符号表示为,—64的立方根是,125的立方根是;的立方根是—5.2、如果=216,则=.如果=64,则=.3、当为时,有意义.4、下列语句正确的是()A、的立方根是2B、的立方根是27C、的立方根是D、立方根是典例分析例若,求的值.●拓展提高一、选择1、若,,则a+b的所有可能值是()A、0B、C、0或D、0或12或2、若式子有意义,则的取值范围为()A、B、C、D、以上均不对二、填空3、的立方根的平方根是4、若,则(—4+x)的立方根为三、解答题5、求下列各式中的x的值(1)125=343(2)6、已知:,且,求的值●体验中考1、(09宁波)实数8的立方根是2、(08泰州市)已知,,互为相反数,则下列各组数中,不是互为相反数的一组是()A、3a与3bB、+2与+2C、与D、与3、(08益阳市)一个正方体的水晶砖,体积为100cm3,它的棱长大约在()A、4~5cm之间B、5~6cm之间C、6~7cm之间D、7~8cm之间12.2实数与数轴◆随堂检测1、下列各数:,,,,,,,中,无理数有个,有理数有个,负数有个,整数有个.2、的相反数是,||=的相反数是,的绝对值=3、设对应数轴上的点A,对应数轴上的点B,则A、B间的距离为4、若实数a<b<0,则|a||b|;大于小于的整数是;比较大小:5、下列说法中,正确的是()A.实数包括有理数,0和无理数B.无限小数是无理数C.有理数是有限小数D.数轴上的点表示实数.◆典例分析例:设a、b是有理数,并且a、b满足等式,求a+b的平方根◆课下作业●拓展提高一、选择1、CA0B如图,数轴上表示1,的对应点分别为A、B,点B关于点A的对称点为C,则点CA0BA.-1B.1-C.2-D.-22、设a是实数,则|a|-a的值()A.可以是负数B.不可能是负数C.必是正数D.可以是整数也可以是负数二、填空3、写出一个3和4之间的无理数4、下列实数,,0,,,1…(每两个1之间的0的个数逐次加1)中,设有m个有理数,n个无理数,则=三、解答题5、比较下列实数的大小(1)||和3(2)和(3)和6、设m是的整数部分,n是的小数部分,求m-n的值.●体验中考AUTONUM\*Arabic.(2011年青岛二中模拟)如图,数轴上两点表示的数分别为和,点B关于点A的对称点为C,则点C所表示的数为()CAOB(第46题图)ACAOB(第46题图)C. D.AUTONUM\*Arabic.(2011年湖南长沙)已知实数在数轴上的位置如图所示,则化简的结果为()110aA.1 B. C. D.3、(2011年江苏连云港)实数在数轴上对应点的位置如图所示,0a0a10b(第8题图)A. B. C. D.4、(2011年浙江省杭州市模2)如图,数轴上点A所表示的数的倒数是()A.B.2C.D.§13.1幂的运算1.同底数幂的乘法试一试(1)2×2=()×()=2;(2)5×5=5;(3)a·a=a.概括:a·a=()()==a.可得a·a=a这就是说,同底数幂相乘,.例1计算:(1)10×10;(2)a·a;(3)a·a·a.练习1.判断下列计算是否正确,并简要说明理由.(1)a·a=a;(2)a+a=a;(3)a·a=a;(4)a+a=a.2.计算:(1)10×10;(2)a·a;(3)x·x·x.3.填空:(1)叫做的m次幂,其中a叫幂的________,m叫幂的________;(2)写出一个以幂的形式表示的数,使它的底数为c,指数为3,这个数为________;(3)表示________,表示________;(4)根据乘方的意义,=________,=________,因此=同底数幂的乘法练习题1.计算:(1)(2)(3)(4)(5)(6)(7)(8)2.计算:(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)3.下面的计算对不对?如果不对,应怎样改正?(1);(2);(3);(4);(5);(6);(7);(8);(9);(10).4.选择题:(1)可以写成().A.B.C.D.(2)下列式子正确的是().A.B.C.D.(3)下列计算正确的是().A.B.C.D.2.幂的乘方根据乘方的意义及同底数幂的乘法填空:(1)(2)=×=2;(2)(3)=×=3;(3)(a)=×××=a.概括(a)=(n个)=(n个)=a可得(a)=a(m、n为正整数).这就是说,幂的乘方,.例2计算:(10);(2)(b).练习1.判断下列计算是否正确,并简要说明理由.(1)(a)=a;(2)a·a=a;(3)(a)·a=a.2.计算:(1)(2);(2)(y);(3)(x);(4)(y)·(y).3、计算:(1)x·(x2)3(2)(xm)n·(xn)m(3)(y4)5-(y5)4(4)(m3)4+m10m2+m·m3·m8(5)[(a-b)n]2[(b-a)n-1]2(6)[(a-b)n]2[(b-a)n-1]2(7)(m3)4+m10m2+m·m3·m8幂的乘方一、基础练习幂的乘方,底数_______,指数____.(am)n=___(其中m、n都是正整数)2、计算:(1)(23)2=_____;(2)(-22)3=______;(3)-(-a3)2=______;(4)(-x2)3=_______。3、如果x2n=3,则(x3n)4=_____.4、下列计算错误的是().A.(a5)5=a25B.(x4)m=(x2m)2C.x2m=(-xm)2D.a2m=(-a2)m5、在下列各式的括号内,应填入b4的是().A.b12=()8B.b12=()6C.b12=()3D.b12=()26、如果正方体的棱长是(1-2b)3,那么这个正方体的体积是().A.(1-2b)6B.(1-2b)9C.(1-2b)12D.6(1-2b)67、计算(-x5)7+(-x7)5的结果是().A.-2x12B.-2x35C.-2x70D.0二、能力提升1、若xm·x2m=2,求x9m=__________2、若a2n=3,求(a3n)4=____________。3、已知am=2,an=3,求a2m+3n=______,4、若644×83=2x,求x的值。5、已知a2m=2,b3n=3,求(a3m)2-(b2n)3+a2m·b3n的值.6、若2x=4y+1,27y=3x-1,试求x与y的值.7、已知a=355,b=444,c=533,请把a,b,c按大小排列.8.已知:3x=2,求3x+2的值.9.已知xm+n·xm-n=x9,求m的值.10.若52x+1=125,求(x-2)2011+x的值.3.积的乘方试一试(1)(ab)=(ab)·(ab)=(aa)·(bb)=ab;(2)(ab)===ab;(3)(ab)===ab.概括(ab)=()·()…()(n个)=()·()=ab.可得(ab)=ab(n为正整数).积的乘方,等于,再.例3计算:(1)(2b);(2)(2×a);(3)(-a);(4)(-3x).练习1.判断下列计算是否正确,并说明理由.(1)(xy)=xy;(2)(-2x)=-2x.2.计算:(1)(3a);(2)(-3a);(3)(ab);(4)(-2×10).3、计算:(1)(2×103)2(2)(-2a3y4)3(3)(4)(5)(-2a2b)2·(-2a2b2)3(6)[(-3mn2·m2)3]2积的乘方一、基础训练1.(ab)2=______,(ab)3=_______.2.(a2b)3=_______,(2a2b)2=_______,(-3xy2)2=_______.3.判断题(错误的说明为什么)(1)(3ab2)2=3a2b4(2)(-x2yz)2=-x4y2z2(3)()2=(4)(5)(a+b)=a+b(6)(-2ab2)3=-6a3b84.下列计算中,正确的是()A.(xy)3=xy3B.(2xy)3=6x3y3C.(-3x2)3=27x5D.(a2b)n=a2nbn5.如果(ambn)3=a9b12,那么m,n的值等于()A.m=9,n=4B.m=3,n=4C.m=4,n=3D.m=9,n=66.a6(a2b)3的结果是()A.a11b3B.a12b3C.a14bD.3a12b7.(-ab2c)2=______,42×8n=2()×2()=2().二、能力提升1.用简便方法计算:(4)(-0.125)12×(-1)7×(-8)13×(-)92.若x3=-8a6b9,求x的值。3.已知xn=5,yn=3,求(xy)3n的值.4.同底数幂的除法试一试用你熟悉的方法计算:(1)2÷2=;(2)10÷10=;(3)a÷a=(a≠0).概括2÷2==;10÷10==;a÷a==一般地,设m、n为正整数,m>n,a≠0,有a÷a=a.这就是说,同底数幂相除,.a÷a=a.例4计算:(1)a÷a;(2)(-a)÷(-a);(3)(2a)÷(2a).(2)你会计算(a+b)÷(a+b)吗?练习1.填空:(1)a·()=a;(2)()·(-b)=(-b);(3)x÷()=x;(4)()÷(-y)=(-y).2.计算:(1)a÷a;(2)(-x)÷(-x);(3)m÷m·m;(4)(a)÷a.3.计算:(1)x÷x;(2)(-a)÷(-a);(3)(p)÷p;(4)a÷(-a).习题13.11.计算(以幂的形式表示):(1)9×9;(2)a·a;(3)3×2;(4)x·x·x.2.计算(以幂的形式表示):(1)(10);(2)(a);(3)(x);(4)(a2)·a.3.判断下列等式是否正确,并说明理由.(1)a·a=(2a);(2)a·b=(ab);(3)a=(a)=(a)=(a).4.计算(以幂的形式表示):(1)(3×10);(2)(2x);(3)(-2x);(4)a·(ab);(5)(ab)·(ac).5.计算:(1)x÷x;(2)(-a)÷(-a);(3)(p)÷p;(4)a÷(-a).6.计算:(1)(a)÷(a);(2)(xy)÷(xy);(3)x·(x)÷x;(4)(y)÷y÷(-y).§13.2整式的乘法1.单项式与单项式相乘计算:例2x·5x(1)3xy·(-2xy);(2)(-5ab)·(-4bc).概括单项式与单项式相乘,只要将它们的、分别相乘,对于只在一个单项式中出现的字母,则作为积的一个因式.例2卫星绕地球表面做圆周运动的速度(即第一宇宙速度)约为7.9×10米/秒,则卫星运行3×10秒所走的路程约是多少?你能说出a·b,3a·2a,以及3a·5ab的几何意义吗?练习1.计算:(1)3a·2a;(2)(-9ab)·8ab;(3)(-3a)·(-2a);(4)-3xyz·(xy).2.光速约为3×10米/秒,太阳光射到地球上的时间约为5×10秒,则地球与太阳的距离约是多少米?单项式与单项式相乘随堂练习题一、选择题1.式子x4m+1可以写成()A.(xm+1)4B.x·x4mC.(x3m+1)mD.x4m+x2.下列计算的结果正确的是()A.(-x2)·(-x)2=x4B.x2y3·x4y3z=x8y9zC.(-4×103)·(8×105)=-3.2×109D.(-a-b)4·(a+b)3=-(a+b)73.计算(-5ax)·(3x2y)2的结果是()A.-45ax5y2B.-15ax5y2C.-45x5y2D.45ax5y2二、填空题4.计算:(2xy2)·(x2y)=_________;(-5a3bc)·(3ac2)=________.5.已知am=2,an=3,则a3m+n=_________;a2m+3n=_________.6.一种电子计算机每秒可以做6×108次运算,它工作8×102秒可做_______次运算.三、解答题7.计算:①(-5ab2x)·(-a2bx3y)②(-3a3bc)3·(-2ab2)2③(-x2)·(yz)3·(x3y2z2)+x3y2·(xyz)2·(yz3)④(-2×103)3×(-4×108)28.先化简,再求值:-10(-a3b2c)2·a·(bc)3-(2abc)3·(-a2b2c)2,其中a=-5,b=0.2,c=2。9.若单项式-3a2m-nb2与4a3m+nb5m+8n同类项,那么这两个单项式的积是多少?四、探究题10.若2a=3,2b=5,2c=30,试用含a、b的式子表示c.2.单项式与多项式相乘试一试计算:2a·(3a-5b).(-2a)·(3ab-5ab).概括单项式与多项式相乘,只要将,再.练习1.计算:(1)3xy·(2xy-3xy);(2)2x·(3x-xy+y).2.化简:x(x-1)+2x(x+1)-3x(2x-5).3、计算:①(x2y-2xy+y2)·(-4xy)②-ab2·(3a2b-abc-1)③(3an+2b-2anbn-1+3bn)·5anbn+3(n为正整数,n>1)④-4x2·(xy-y2)-3x·(xy2-2x2y)单项式与多项式相乘随堂练习题一、选择题1.计算(-3x)·(2x2-5x-1)的结果是()A.-6x2-15x2-3xB.-6x3+15x2+3xC.-6x3+15x2D.-6x3+15x2-12.下列各题计算正确的是()A.(ab-1)(-4ab2)=-4a2b3-4ab2B.(3x2+xy-y2)·3x2=9x4+3x3y-y2C.(-3a)(a2-2a+1)=-3a3+6a2D.(-2x)(3x2-4x-2)=-6x3+8x2+4x3.如果一个三角形的底边长为2x2y+xy-y2,高为6xy,则这个三角形的面积是()A.6x3y2+3x2y2-3xy3B.6x3y2+3xy-3xy3C.6x3y2+3x2y2-y2D.6x3y+3x2y24.计算x(y-z)-y(z-x)+z(x-y),结果正确的是()A.2xy-2yzB.-2yzC.xy-2yzD.2xy-xz二、填空题5.方程2x(x-1)=12+x(2x-5)的解是__________.6.计算:-2ab·(a2b+3ab2-1)=_____________.7.已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是___________.三、解答题8.计算:①(x2y-2xy+y2)·(-4xy)②-ab2·(3a2b-abc-1)③(3an+2b-2anbn-1+3bn)·5anbn+3(n为正整数,n>1)④-4x2·(xy-y2)-3x·(xy2-2x2y)9.化简求值:-ab·(a2b5-ab3-b),其中ab2=-2。四、探究题10.请先阅读下列解题过程,再仿做下面的题.已知x2+x-1=0,求x3+2x2+3的值.解:x3+2x2+3=x3+x2-x+x2+x+3=x(x2+x-1)+x2+x-1+4=0+0+4=4如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值.3.多项式与多项式相乘回忆(m+n)(a+b)=ma+mb+na+nb概括这个等式实际上给出了多项式乘以多项式的法则:多项式与多项式相乘,先用,再把.例4计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1).例5计算:(1)(x-3y)(x+7y);(2)(2x+5y)(3x-2y).练习1.计算:(1)(x+5)(x-7);(2)(x+5y)(x-7y)(3)(2m+3n)(2m-3n);(4)(2a+3b)(2a+3b).2.小东找来一张挂历纸包数学课本.已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米.问小东应在挂历纸上裁下一块多大面积的长方形?习题13.21.计算:(1)5x·8x;(2)11x·(-12x);(3)2x·(-3x);(4)(-8xy)·-(1/2x).2.世界上最大的金字塔——胡夫金字塔高达146.6米,底边长230.4米,用了约2.3×10块大石块,每块重约2.5×10千克.请问:胡夫金字塔总重约多少千克?3.计算:(1)-3x·(2x-x+4);(2)5/2xy·(-xy+4/5xy).4.化简:(1)x(1/2x+1)-3x(3/2x-2);(2)x(x-1)+2x(x-2x+3).5.一块边长为xcm的正方形地砖,被裁掉一块2cm宽的长条.问剩下部分的面积是多少?6.计算:(1)(x+5)(x+6);(2)(3x+4)(3x-4);(3)(2x+1)(2x+3);(4)(9x+4y)(9x-4y).13.5因式分解(1)一、基础训练1.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么其余的因式是()A.-1-3x+4yB.1+3x-4yC.-1-3x-4yD.1-3x-4y2.多项式-6ab2+18a2b2-12a3b2c的公因式是()A.-6ab2cB.-ab2C.-6ab2D.-6a3b2c3.下列用提公因式法分解因式正确的是()A.12abc-9a2b2=3abc(4-3ab)B.3x2y-3xy+6y=3y(x2-x+2y)C.-a2+ab-ac=-a(a-b+c)D.x2y+5xy-y=y(x2+5x)4.下列等式从左到右的变形是因式分解的是()A.-6a3b2=2a2b·(-3ab2)B.9a2-4b2=(3a+2b)(3a-2b)C.ma-mb+c=m(a-b)+cD.(a+b)2=a2+2ab+b25.下列各式从左到右的变形错误的是()A.(y-x)2=(x-y)2B.-a-b=-(a+b)C.(m-n)3=-(n-m)3D.-m+n=-(m+n)6.若多项式x2-5x+m可分解为(x-3)(x-2),则m的值为()A.-14B.-6C.6D.47.(1)分解因式:x3-4x=_______;(2)因式分解:ax2y+axy2=________.8.因式分解:(1)3x2-6xy+x;(2)-25x+x3;(3)9x2(a-b)+4y2(b-a);(4)(x-2)(x-4)+1.二、能力训练9.计算54×99+45×99+99=________.10.若a与b都是有理数,且满足a2+b2+5=4a-2b,则(a+b)2006=_______.11.若x2-x+k是一个多项式的平方,则k的值为()A.B.-C.D.-12.若m2+2mn+2n2-6n+9=0,求的值.13.利用整式的乘法容易知道(m+n)(a+b)=ma+mb+na+nb,现在的问题是:如何将多项式ma+mb+na+nb因式分解呢?用你发现的规律将m3-m2n+mn2-n3因式分解.14.由一个边长为a的小正方形和两个长为a,宽为b的小矩形拼成如图的矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式.15.说明817-299-913能被15整除.参考答案1.D点拨:-6ab+18abx+24aby=-6ab(1-3x-4y).2.C点拨:公因式由三部分组成;系数找最大公约数,字母找相同的,字母指数找最低的.3.C点拨:A中c不是公因式,B中括号内应为x2-x+2,D中括号内少项.4.B点拨:分解的式子必须是多项式,而A是单项式;分解的结果是几个整式乘积的形式,C、D不满足.5.D点拨:-m+n=-(m-n).6.C点拨:因为(x-3)(x-2)=x2-5x+6,所以m=6.7.(1)x(x+2)(x-2);(2)axy(x+y).8.(1)3x2-6xy+x=x(3x-6y+1);(2)-25x+x3=x(x2-25)=x(x+5)(x-5);(3)9x2(a-b)+4y2(b-a)=9x2(a-b)-4y2(a-b)=(a-b)(9x2-4y2)=(a-b)(3x+2y)(3x-2y);(4)(x-2)(x-4)+1=x2-6x+8+1=x2-6x+9=(x-3)2.9.9900点拨:54×99+45×99+99=99(54+45+1)=99×100=9900.10.1点拨:∵a2+b2+5=4a-2b,∴a2-4a+4+b2+2b+1=0,即(a-2)2+(b+1)2=0,所以a=2,b=-1,(a+b)2006=(2-1)2006=1.11.A点拨:因为x2-x+=(x-)2,所以k=.12.解:m2+2mn+2n2-6n+9=0,(m2+2mn+n2)+(n2-6n+9)=0,(m+n)2+(n-3)2=0,m=-n,n=3,∴m=-3.==-.13.解:m3-m2n+mn2-n3=m2(m-n)+n2(m-n)=(m-n)(m2+n2).14.a2+2ab=a(a+2b),a(a+b)+ab=a(a+2b),a(a+2b)-a(a+b)=ab,a(a+2b)-2ab=a2,a(a+2b)-a2=2ab等.点拨:将某一个矩形面积用不同形式表示出来.15.解:817-279-913=(34)7-(33)9-(32)13=328-327-326=326(32-3-1)=326×5=325×3×5=325×15,故817-279-913能被15整除.13.5因式分解(2)1.3a4b2与-12a3b5的公因式是_________.2.把下列多项式进行因式分解(1)9x2-6xy+3x;(2)-10x2y-5xy2+15xy;(3)a(m-n)-b(n-m).3.因式分解:(1)16-m2;(2)(a+b)2-1;(3)a2-6a+9;(4)x2+2xy+2y2.4.下列由左边到右边的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.ma+mb+na+nb=m(a+b)+n(a+b)5.因式分解:(1)3mx2+6mxy+3my2;(2)x4-18x2y2+81y4;(3)a4-16;(4)4m2-3n(4m-3n).6.因式分解:(1)(x+y)2-14(x+y)+49;(2)x(x-y)-y(y-x);(3)4m2-3n(4m-3n).7.用另一种方法解案例1中第(2)题.8.分解因式:(1)4a2-b2+6a-3b;(2)x2-y2-z2-2yz.9.已知:a-b=3,b+c=-5,求代数式ac-bc+a2-ab的值.参考答案1.3a3b22.(1)原式=3x(3x-2y+1);(2)原式=-(10x2y+5xy2-15xy)=-5xy(2x+y-3);(3)原式=a(m-n)+b(m-n)=(m-n)(a+b).点拨:(1)题公因式是3x,注意第3项提出3x后,不要丢掉此项,括号内的多项式中写1;(2)题公因式是-5xy,当多项式第一项是负数时,一般提出“-”号使括号内的第一项为正数,在提出“-”号时,注意括号内的各项都变号.3.(1)16-m2=42-(m)2=(4+m)(4-m);(2)(a+b)2-1=[(a+b)+1][(a+b)-b]=(a+b+1)(a+b-1);(3)a2-6a+9=a2-2·a·3+32=(a-3)2;(4)x2+2xy+y2=(x2+4xy+4y2)=[x2+2·x·2y+(2y)2]=(x+2y)2.点拨:如果多项式完全符合公式形式则直接套用公式,若不是,则要先化成符合公式的形式,再套用公式.(1)(2)符合平方差公式的形式,(3)(4)符合完全平方公式的形式.4.C点拨:这是一道概念型试题,其思路是根据因式分解的定义来判断,分解因式的最后结果应是几个整式积的形式,只有C是,故选C.5.(1)3mx2+6mxy+3my2=3m(x2+2xy+y2)=3m(x+y)2;(2)x4-18x2y2+81y4=(x2)2-2·x2·9x2+(9y2)2=(x2-9y2)2=[x2-(3y)2]2=[(x+3y)(x-3y)]=(x+3y)2(x-3y)2;(3)a416=(a2)2-42=(a2+4)(a2-4)=(a2+4)(a+2)(a-2);(4)4m2-3n(4m-3n)=4m2-12mn+9n2=(2m)2-2·2m·3n+(3n)2=(2m-3n)2.点拨:因式分解时,要进行到每一个多项式因式都不能分解为止.(1)先提公因式3m,然后用完全平方公式分解;(2)把x4作(x2)2,81y4作(9y2)2,然后运用完全平方公式.6.(1)(x+y)2-14(x+y)+49=(x+y)2-2·(x+y)·7+72=(x+y-7)2;(2)x(x-y)-y(y-x)=x(x-y)+y(x-y)=(x-y)(x+y);(3)4m2-3n(4m-3n)=4m2-12mn+9n2=(2m)2-2·2m·3n+(3n)2=(2m-3n)2.7.x(x-y)+y(y-x)=x2-xy+y2-xy=x2-2xy+y2=(x-y)2.8.解:(1)原式=(4a2-b2)+(6a-3b)=(2a+b)(2a-b)+3(2a-b)=(2a-b)(2a+b+3);(2)原式=x2-(y2+2yz+z2)=x2-(y+z)2=(x+y+z)(x-y-z).9.∵a-b=3,b+c=-5,∴a+c=-2,∴ac-bc+a2-ab=c(a-b)+a(a-b)=(a-b)(c+a)=3×(-2)=-6.因式分解方法研究系列三、十字相乘法(关于的形式的因式分解)1、因式分解以下各式:1、;2、;3、;4、2、因式分解以下各式:1、;2、;3、;4、2、因式分解以下各式:1、;2、;3、;4、3、挑战自我:1、;2、数学当堂练习(1)姓名计算(1)(-2a)2(3ab2-5ab3)(2)x(x2-1)+2x2(x+1)-3x(2x-5)(3)3(m+n)(m+n)4+3(-m-n)3(m+n)2数学当堂练习(2)姓名计算(1)(x-y)3÷(y-x)2=(2)3a2·(2a2-9a+3)-4a(2a-1)(3)5xy[4xy-6(xy-xy2)](4)(2x-3)(x+4)(5)(3x+y)(x一2y)数学当堂练习(3)姓名计算(1)(3x-5)(2x+3)(2)5x(x-2)-(x-2)(x+4)解不等式1-(2y+1)(y-2)>y2-(3y-1)(y+3)-11数学当堂练习(4)姓名计算(1)(1-xy)(-1-xy)(2)(a+2)(a-2)(a2+4)(3)(x+y)(x-y)-(x-2y)(x+2y)(4)6×5数学当堂练习(5)姓名计算(1)(2x-1)2-(2x+1)2(2)(2x-1)2(2x+1)2(3)(2x)2-3(2x+1)2(4)(2x+y–3)2(5)(m–2n+3)(m+2n+3)数学当堂练习(6)姓名计算(1)(1+x+y)(1-x–y)(2)(3x-2y+1)2(3)已知(x+y)2=6(x-y)2=8求(1)(x+y)2(2)xy值(4)(x-2)(x2+2x+4)(5)x(x-1)2-(x2–x+1)(x+1)数学当堂练习(7)姓名计算(1)(-2m-1)2(2)(3x-2y+1)2(3)(3s-2t)(9s2+6st+4t2)(4)-21a2b3c÷7a2b2(5)(28a4b2c-a2b3+14a2b2)÷(-7a2b)(6)(x2y-xy2-2xy)÷xy数学当堂练习(8)姓名一.计算(1)(16x3-8x2+4x)÷(-2x)(2)(x2x3)3÷(-x3)4二。因式分解(1)2x+4x(2)5(a-2)–x(2-x)(3)-12m2n+3mn218.1勾股定理1.在△ABC中,∠B=90°,∠A、∠B、∠C对边分别为a、b、c,则a、b、c的关系是()A.c2=a2+b2B.a2=(b+c)(b-c)C.a2=c2-b2D.b=a+c知识点:勾股定理知识点的描述:直角三角形中,两直角边的平方和等于斜边的平方,要正确的理解勾股定理的条件和结论,要明确斜边和直角边在定理中的区别。答案:B详细解答:在△ABC中,∠B=90°,∠B的对边b是斜边,所以b2=a2+c2。a2=(b+c)(b-c)可变形为b2=a2+c2,所以选B1.下列说法正确的是()A.若a、b、c是△ABC的三边,则a2+b2=c2;B.若a、b、c是Rt△ABC的三边,则a2+b2=c2;C.若a、b、c是Rt△ABC的三边,,则a2+b2=c2;D.若a、b、c是Rt△ABC的三边,,则c2-b2=a2。答案:D详细解答:A是错的,缺少直角条件;B也是错的,不明确哪一边是斜边,无法判断哪两边的平方和等于哪一边的平方;C也是错的,既然,那么a边才是斜边,应该是a2=c2+b2D才是正确的,,那么c2=a2+b2,即c2-b2=a2.2.小明量得家里新购置的彩电屏幕的长为58cm,宽为46cm,则这台电视机的尺寸(即电视机屏幕的对角线长)是()A.9英寸(23cm)B.21英寸(54cm)C.29英寸(74cm)D.34英寸(87cm)知识点:勾股定理的应用知识点的描述:直角三角形中,两直角边的平方和等于斜边的平方。求某一条线段的长度的一般方法是:把这条线段放在一个直角三角形中,作为三角形的边来求。答案:C详细解答:如答图,四边形ABCD表示彩电屏幕,其长为58cm,即BC=58cm;宽为46cm,即AB=46cm。在直角三角形ABC中,BC=58cm,AB=46cm,那么AC2=BC2+AB2=572+462=5365,所以AC=74cm,选C。2.两只小鼹鼠在地下挖洞,一只朝前方挖,每分钟挖8cm,另一只朝左挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A.50cmB.80cmC.100cmD.140cm答案:C详细解答:如答图,一只小鼹鼠从B挖到C,BC=8cm×10=80cm,另一只小鼹鼠从B挖到A,BA=6cm×10=60cm,由题意可知两个方向互相垂直,所以AC2=AB2+BC2=602+802=10000,所以AC=100cm3.已知一个三角形三个内角的比是1:2:1,则它的三条边的比是()A.1:1:B.1:1:2C.1::D.1:4:1知识点:等腰直角三角形、含30°角的直角三角形知识点的描述:要求知道等腰直角三角形、含30°角的直角三角形的三边的比的来历,最好能记住三边之比。答案:A详细解答:三角形三个内角的比是1:2:1,可以知道三个角分别为45°、90°、45°,如答图,假设AB=1,那么BC=1,AC2=AB2+BC2=1+1=2,所以AC=,三条边的比是1:1:。3.已知△ABC中,∠A=∠C=∠B,则它的三条边之比为().A.1:1:B.1::2C.1::D.1:4:1答案:B详细解答:△ABC中,∠A=∠C=∠B,可求出∠A=30°,∠C=60°,∠B=90°,画出答图。假设BC=1,那么AC=2,根据勾股定理得AB2=AC2-BC2=4-1=3,所以AB=,因此三边的比为1::2。4.直角三角形中,斜边的平方等于两直角边乘积的2倍,这个三角形的最小锐角为()(A)15° (B)30° (C)45° (D)不能确定知识点:勾股定理在数学中的应用知识点的描述:直角三角形中,两直角边的平方和等于斜边的平方。答案:C详细解答:由勾股定理得AC2=BC2+AB2,又已知斜边的平方等于两直角边乘积的2倍,即AC2=2AB×BC,所以BC2+AB2=2AB×BC,得(BC-AB)2=0,所以BC=AB,所以三角形ABC是等腰直角三角形,最小锐角为45°。4.如图所示,Rt△ABC中,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′长为()(A)4 (B)5 (C)6 (D)答案:D详细解答:由题意“将△ABP绕点A逆时针旋转后,能与△ACP′重合”知,△ABP≌△ACP′,所以∠CAP′=∠BAP,AP′=AP,又因为∠BAC=90°,所以∠PAP′=90°,AP′=AP=3,在直角三角形APP′中,PP′2=AP′2+AP2=32+32=18,所以PP′=5.如图,数轴上的点A所表示的数为x,则x的值为()A.B.-C.2D.-2知识点:认识长度为无理数的线段知识点的描述:在直角三角形中利用勾股定理,可以作出长度为无理数的线段答案:B详细解答:在Rt△BCD中,CB=BD=1,那么CD2=CB2+BD2=2,所以CD=,CA=CD=,因此点A所表示的数为-5.如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是()A.0B.1C.2D.3ABABC答案:C详细解答:在Rt△ABD中,AD=5,BD=1,那么AB2=AD2+BD2=26,AB=在Rt△BCE中,BE=3,CE=2,那么BC2=BE2+CE2=13,BC=在Rt△ACF中,AF=4,CF=3,那么AC2=AF2+CF2=25,AC=5所以边长为无理数的边是:AB和BCB6.已知一个直角三角形的两边长分别为3和4,则第三边长是()BA.5 B.25 C. D.5或知识点:两解问题知识点的描述:在直角三角形中应用勾股定理要注意哪一边是斜边。答案:D详细解答:如果两直角边长分别为3和4,那么第三边就是斜边,其长度为5;如果4是斜边,3是直角边,那么另一条直角边为。6.△ABC中,若AB=15,AC=13,高AD=12,则△ABC的周长是()A.42B.32C.42或32D.37或33答案:C详细解答:若高AD在△ABC内部,如图,在Rt△ABD中,AB=15,AD=12,那么BD2=AB2-AD2=81,BD=9在Rt△ACD中,AC=13,AD=12,那么CD2=AC2-AD2=25,CD=5所以BC=BD+CD=9+5=14,这时周长为15+13+14=42若高AD在△ABC外部,如图,在Rt△ABD中,AB=15,AD=12,那么BD2=AB2-AD2=81,BD=9在Rt△ACD中,AC=13,AD=12,那么CD2=AC2-AD2=25,CD=5所以BC=BD-CD=9-5=4,这时周长为15+13+4=32所以选C.7.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞行()(A)6m (B)8m (C)10m (D)18m 知识点:构建直角三角形、勾股定理、实际问题知识点的描述:在解决实际问题时,常常要构建直角三角形,构成勾股定理的模型,应用勾股定理解决实际问题答案:C详细解答:把实际问题转化为数学问题,如图,AB表示高8m的树,CD表示高2m的树,小鸟从一棵树的树梢飞到另一棵树的树梢的最短路径为AD,过D点作AB的垂线,构成直角三角形AED。在直角三角形AED中,DE=BC=8m,AE=AB-EB=AB-CD=6m,从而AD2=AE2+DE2=62+82=100,所以AB=10m。7.一根高9米的旗杆在离地4米高处折断,折断处仍相连,此时在3.9米远处玩耍的身高为1米的小明是否有危险()A.没有危险B.有危险C.可能有危险D.无法判断答案:B详细解答:把实际问题转化为数学问题,如答图,AB代表原旗杆的位置,AF表示折段的旗杆,CD表示小明,如果AD小于等于AF,就有危险,反之就没有危险。过D点作AB的垂线,构成直角三角形AED。在直角三角形AED中,DE=BC=3.9,AE=AB-EB=AB-CD=3,从而AD2=AE2+DE2=32+3.92=24.21。由题意知AF=5,所以AF2=25,显然AD小于AF,有危险。BACD.8.如图,AB为一棵大树,在树上距地面10BACD.A.10mB.11mC.12mD.15m知识点:方程的思想、勾股定理的实际应用问题知识点的描述:在解决几何中的有关计算问题时,经常要用到代数中的方程,要形成用方程解决几何问题的思想意识。答案:C详细解答:设AD=x米,则AB为(10+x)米,AC为(15-x)米,BC为5米,∴(x+10)2+52=(15-x)2,解得x=2,∴10+x=12(米)所以树高12m。8.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,如果竿顶和岸边的水平面刚好相齐,那么河水的深度为().A.2mB.2.5mC.2.25mD.3m答案:A详细解答:画出如图所示的示意图,AB是竖直的竹竿,CB是拉向岸边的竹竿,CD是水面,由题意知:CD=1.5m,AD=0.5m,假设河水的深度BD为xm,那么竹竿的高就是(x+0.5)m,所以CB=(x+0.5)m,直角三角形BDC中应用勾股定理得(x+0.5)2=x2+1.52,解得x=2,所以河水的深度为2m9.已知:如图,△ABC中,BC=4,∠A=45°,∠B=60°,那么AC=()(A) (B)4 (C)6 (D)知识点:转化的数学思想、勾股定理知识点的描述:在解决有关求线段长度问题时,常通过添加辅助线,把一般三角形的问题转化为直角三角形的问题,利用勾股定理解决问题。答案:A(2也行)分析:由于本题中的△ABC不是直角三角形,所以根据题设只能直接求得∠ACB=75°,添置AB边上的高这条辅助线,就可以得到直角三角形,在直角三角形中就可以求得一些线段的长度详细解答:作AB边的高CD,如图,在Rt△BDC中,∠B=60°,那么∠BCD=90°-60°=30°,BC=4,那么BD=2,利用勾股定理可求出CD=;在Rt△ADC中,∠A=45°,那么∠ACD=90°-45°=45°,所以AD=CD=,那么利用勾股定理得AC2=AD2+CD2=24,所以AC=;小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。请你思考本题还可以作其它辅助线吗?为什么?(注意利用特殊角)9.已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。四边形ABCD的面积为()。(A)20 (B) (C) (D)16答案:C(目前初二的学生还没学到二次根式的化简,做到2-就可以了)分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。不妨几种方法都尝试一下,你会有很多收获的。详细解答:延长AD、BC交于E。∵∠A=∠60°,∠B=90°,∴∠E=30°。∴AE=2AB=8,CE=2CD=4,∴BE2=AE2-AB2=82-42=48,BE==。 ∵DE2=CE2-CD2=42-22=12,∴DE==。∴S四边形ABCD=S△ABE-S△CDE=AB·BE-CD·DE=×4×-×2·=2-=小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。另外作辅助线要充分考虑利用条件,一般情况下是不能把特殊角分割的。10.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.B.C.D.知识点:“折叠”问题、勾股定理的应用知识点的描述:“折叠”问题是数学中常见问题之一.解决问题的关键就是一定要搞清是怎样折叠的,尤其是原来的线段和角折叠到哪去了,理清已知和未知,找到能联系二者的直角三角形,利用勾股定理问题就迎刃而解。答案:B详细解答:假设CD=xcm,那么DE=CD=xcm,BD=(8-x)cm。因为直角三角形纸片的两直角边AC=6cm,BC=8cm,所以利用勾股定理可得斜边AB=10cm,又AE=AC=6cm,所以EB=AB-AE=4(cm),在Rt△EBD中,EB=4cm,DE=xcm,BD=(8-x)cm,那么(8-x)2=x2+42,解得x=3所以CD=10.如下图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,AD=10cm,求EC的长().(A)3cm (B)4cm (C)5cm (D)6cm答案:A详细解答:由折叠的过程可知.△AFE≌△ADE、AD=AF,DE=EF,在Rt△ABF中,AB=8cm,AF=10cm,BF2=AF2-AB2=102-82=62,BF=6,FC=BC-BF=10-6=4cm,如果设CE=xcm,DE=(8-x)cm,所以EF=(8-x)cm.在Rt△CEF中,EF2=CF2+CE2,用这个关系建立方程:(8-x)2=42+x2解得x=3,即CE的长为3cm.18.2勾股定理的逆定理1.如图所示,△ABC中,若∠A=75°,∠C=45°,AB=2,则AC的长等于()A.2B.2C.D.知识点:转化的数学思想、勾股定理知识点的描述:在解决有关求线段长度问题时,常通过添加辅助线,把一般三角形的问题转化为直角三角形的问题,利用勾股定理解决问题。勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。答案:C详细解答:作BC边上的高AD,ABC中,∠BAC=75°,∠C=45°,那么∠B=60°,从而∠BAD=30°在Rt△ABD中,∠BAD=30°,AB=2,所以BD=1,AD=在Rt△ACD中,∠C=45°,AD=,所以CD=AD=,利用勾股定理可得AC=。1.已知:在Rt△ABC中,∠C=90°,CD⊥AB于D,∠A=60°,CD=,线段AB长为()。A.2B.3C.4D.3答案:C分析:欲求AB,可由AB=BD+AD,分别在两个三角形中利用勾股定理和特殊角,求出BD和AD。或欲求AB,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC和BC。详细解答:在Rt△ACD中,∠A=60°,那么∠ACD=30°,又已知CD=,所以利用勾股定理或特殊三角形的三边的比求出AD=1。在Rt△ACB中,∠A=60°,那么∠B=30°。在Rt△BCD中,∠B=30°,又已知CD=,所以BC=2,利用勾股定理或特殊三角形的三边的比求出BD=3。因此AB=BD+CD=3+1=4,小结:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求对图形及性质掌握非常熟练,能够灵活应用。目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等。2.已知a,b,c为△ABC三边,且满足a2c2-b2c2=a4-b4,则它的形状为A.直角三角形 B.等腰三角形C.等腰直角三角形 D.等腰三角形或直角三角形知识点:综合代数变形和勾股定理的逆定理判断三角形的形状知识点的描述:这类问题常常用到代数中的配方、因式分解,再结合几何中的有关定理不难作出判断。答案:D详细解答:∵a2c2-b2c2=a4-b4,∴左右两边因式分解得∴∴或,即或,所以三角形的形状为等腰三角形或直角三角形。2.若△ABC的三边a,b,c满足(c-b)2+︱a2-b2-c2︱=0,则△ABC是()(A)等腰三角形 (B)直角三角形 (C)等腰直角三角形 (D)等腰三角形或直角三角形答案:C详细解答:∵(c-b)2+︱a2-b2-c2︱=0,∴c-b=0且a2-b2-c2=0即且,所以三角形的形状为等腰直角三角形。3.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()知识点:勾股定理的逆定理知识点的描述:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形,最大的边就是斜边。满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.最好能记住常见的几组勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17等。答案:C详细解答:A图和B图中右边的三角形三边不存在某两边的平方和等于第三边的平方,不是直角三角形。D图中两个的三角形三边都不存在某两边的平方和等于第三边的平方,都不是直角三角形。只有C图中的两个三角形都是直角三角形。3.在下列说法中是错误的()A.在△ABC中,(为正整数,且),则△ABC为直角三角形.B.在△ABC中,若∠A:∠B:∠C=3:4:5,则△ABC为直角三角形.C.在△ABC中,若,则△ABC为直角三角形.D.在△ABC中,若a:b:c=5:12:13,则△ABC为直角三角形.答案:B详细解答:在△ABC中,若∠A:∠B:∠C=3:4:5,那么最大角∠C=不是直角三角形。△ABC三条边的比为a:b:c=5:12:13,则可设a=5k,b=12k,c=13k,a2+b2=25k2+144k2=169k2,c2=(13k)2=169k2,所以,a2+b2=c2,△ABC是直角三角形.4.下列各命题的逆命题不成立的是()A.两直线平行,同旁内角互补;B.若两个数的绝对值相等,则这两个数也相等C.对顶角相等D.如果a2=b2,那么a=b知识点:互逆命题知识点的描述:如果一个命题的题设是另一个命题的结论,而结论又是另一个命题的题设,那么这样的两个命题是互逆命题。一个命题和它的逆命题的真假没有什么联系。答案:C详细解答:“对顶角相等”的逆命题是“相等的角是对顶角”,显然这是一个假命题。4.下列命题的逆命题成立的是()(A)若a=b,则 (B)全等三角形的周长相等(C)同角(或等角)的余角相等(D)若a=0,则ab=0答案:C详细解答:(A)的逆命题是:若,则a=b。不一定成立,也可能a=-b(B)的逆命题是:周长相等的三角形全等。不一定成立,两个三角形周长相等,形状不一定就相同。(D)的逆命题是:若ab=0,则a=0。不一定成立,也可能是b=0,而a≠0。5.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距()A.25海里 B.30海里 C.35海里 D.40海里知识点:勾股定理的实际应用题知识点的描述:求距离或某个长度是很常见的实际应用题,这种问题一般转化为几何中的求线段长度问题,通常是在现有的直角三角形或构建的直角三角形中,利用勾股定理求出线段的长度,从而解决实际问题。答案:D详细解答:画出答题图,由题意知,三角形ABC是直角三角形,AC=32海里,AB=24海里,根据勾股定理得BC2=AC2+AB2=322+242=1600,所以BC=40(海里)5.有一长、宽、高分别为5cm、4cm、3cm的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计)要求木条不能露出木箱.请你算一算,能放入的细木条的最大长度是()A.B.C.D.答案:C详细解答:画出如图所示的木箱图,图中AD的长度就是能放入的细木条的最大长度,由题意知CB=5cm、CA=4cm、BD=3cm在Rt△ACB中,AC和BC是直角边,AB是斜边,AB2=AC2+CB2=41,在Rt△ADB中,AB和BD是直角边,AD是斜边,AD2=AB2+BD2=41+9=50,所以AD=6.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对知识点:网格问题,勾股定理和逆定理知识点的描述:网格问题是常见的问题,解决这种问题要充分的利用正方形网格。勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形答案:A详细解答:把△ABC的各边分别放在不同的直角三角形中,给出必须的点的名称,画出图形。在Rt△BCD中,CD=1,DB=8,那么CB2=CD2+BD2=65,在Rt△ACE中,AE=2,CE=3,那么AC2=AE2+CE2=13,在Rt△ABF中,AF=6,BF=4,那么AB2=AF2+BF2=52,所以,在△ABC中,AC2+AB2=13+52=65,又CB2=65,所以,AC2+AB2=CB2,根据勾股定理的逆定理可知三角形ABC是直角三角形6.如图,图中的小方格都是边长为1的正方形网格,则图中四边形的面积是()A.25B.12.5C.9D.8.5答案:B详细解答:S四边形EFGH=SABCD-S△DEF-S△CFG-S△BGH-S△AEH=5×5-×1×2-×3×3-×2×3-×2×4=12.57.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求得四边形ABCD的面积.()A.36B.25C.24D.30知识点:勾股定理和逆定理在数学问题中的应用知识点的描述:勾股定理的内容:直角三角形的两直角边的平方和等于斜边的平方。勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形。答案:A分析:根据题目所给数据特征,联想勾股数,连接AC,可实现四边形向三角形转化,并运用勾股定理的逆定理可判定△ACD是直角三角形.详细解答:连接AC,在Rt△ABC中,AC2=AB2+BC2=32+42=25,∴AC=5.在△ACD中,∵AC2+CD2=25+122=169,又∵AD2=132=169,∴AC2+CD2=AD2,∴∠ACD=90°.故S四边形ABCD=S△ABC+S△ACD=AB·BC+AC·CD=×3×4+×5×12=6+30=36.7.在四边形ABCD中,AB=2,BC=,CD=5,DA=4,∠B=90°,那么四边形ABCD的面积是()。A.10B.C.D.答案:B详细解答:连接AC,在Rt△ABC中,AB=2,,BC=所以=+=9所以AC=3又因为,所以所以∠CAD=90°所以=×2×+×3×4=8.已知:如图,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3。那么四边形ABCD的面积是()。A.24B.36C.18D.20知识点:勾股定理和逆定理在数学问题中的应用知识点的描述:勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形。答案:C详细解答:如图,作DE∥AB,连结BD,可以证明△ABD≌△EDB(ASA);所以DE=AB=4,BE=AD=3,EC=BC-EB=6-3=3;在△DEC中,EC=3;DE=4,CD=5,3、4、5勾股数,所以△DEC为直角三角形,DE⊥BC;利用梯形面积公式可得:四边形ABCD的面积是(3+6)×4=188.已知,△ABC中,AB中,AB=17cm,BC=16cm,BC边上的中线AD=15cm,求AC得()。A.15B.16C.17D.18答案:C详细解答:如图,∵AD是BC边上的中线,BC=16cm∴BD=8cm∴在△ABD中:AB=17cm,AD=15cm,BD=8cm则有:∴∠ADB=90°∴AD⊥BC,即∠ADC=90°在Rt△ADC中,∠ADC=90°,AD=15cm,CD=8cm根据勾股定理得:AC==17(cm)9.已知:如图,在△ABC中,CD是AB边上的高,且CD2=AD·BD,△ABC是()。A.直角三角形B.等腰三角形C.不等边三角形D.等边三角形知识点:勾股定理和逆定理在数学问题中的应用知识点的描述:勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形。答案:A详细解答:∵AC2=AD2+CD2,BC2=CD2+BD2∴AC2+BC2=AD2+2CD2+BD2又∵CD2=AD·BD∴AC2+BC2=AD2+2AD·BD+BD2=(AD+BD)2=AB2所以△ABC是直角三角形。9.如图,在△ABC中,∠ACB=90o,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求得∠BPC的度数().AAC东南AAC东南BACCPBC.135°D.120°答案:C详细解答:如答图,将△APC绕点C旋转,使CA与CB重合,即△APC≌△BEC,∴△PCE为等腰Rt△,∴∠CPE=45°,PE2=PC2+CE2=8.又∵PB2=1,BE2=9,∴PE2+PB2=BE2,则∠BPE=90°,∴∠BPC=135°.10.已知:如图正方形ABCD中,E是AD的中点,点F在DC上且DF=DC,判断△BEF为()。A.直角三角形B.等腰三角形C.不等边三角形D.等边三角形知识点:勾股定理和逆定理在数学问题中的应用知识点的描述:勾股定理的内容:直角三角形两直角边的平方和等于斜边的平方。勾股定理的逆定理:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形。答案:A详细解答:设DF=a,则DE=AE=2a,CF=3a,AB=BC=4a。在Rt△ABE中,BE2=AB2+AE2=(4a)2+(2a)2=20a2在Rt△DEF中,EF2=DE2+DF2=(2a)2+a2=5a2在Rt△BCF中,BF2=BC2+CF2=(4a)2+(3a)2=25a2所以BE2+EF2=BF2所以∠BEF=90°所以△BEF为直角三角形。10.如图,△ABC中,D是AB的中点,AC=12,BC=5,CD=。△ABC为()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形答案:A详细解答:延长CD到点E,使得DE=CD,连接AE∵CD=,DE=CD∴CE=13∵在△ADE和△BDC中∴△ADE≌△BDC∴AE=BC=5在△AEC中:AE=5,AC=12,CE=13即,∴∠EAC=90°∵∠EAB=∠CBA∴∠CAB+∠CBA=∠CAB+∠EAB=90°∴∠ACB=90°∴△ACB为直角三角形第十八章勾股定理1.三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是()A.a:b:c=8∶16∶17B.a2-b2=c2C.a2=(b+c)(b-c)D.a=26b=10c=24知识点:勾股定理的逆定理知识点的描述:在三角形中,如果某两边的平方和等于第三边的平方,那么这个三角形是直角三角形,最大的边就是斜边。满足a2+b2=c2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.最好能记住常见的几组勾股数:3、4、5;5、12、13;6、8、10;7、24、25;8、15、17等。答案:A详细解答:A.a:b:c=8∶16∶17,可设a=8k,b=16k,c=17k,a2+b2=64k2+256k2=320k2,c2=(17k)2=289k2,所以,a2+b2≠c2,这个三角形不是直角三角形.B.a2-b2=c2即a2=c2+b2,这个三角形是直角三角形.C.a2=(b+c)(b-c)即a2=b2-c2,所以a2+c2=b2,这个三角形是直角三角形.D.a=26,b=10,c=24,那么c2+b2=102+242=676,a2=262=676,所以a2=c2+b2,这个三角形是直角三角形.1.有一木工师傅测量了一个等腰三角形的腰、底边和高的长,但他把这三个数据与其它的数据弄混了,请你帮他找出来,是(). (A)13、12、12 (B)12、12、8 (C)13、10、12 (D)5、8、4答案:C详细解答:如图,假设等腰三角形ABC中,AB=AC=13,中线AD=12,由于CB=10,那么CD=5,△ACD的三边是一组勾股数,所以AD是高。其他三组数据的△ACD的三边都不是一组勾股数,AD不可能是高。2、△ABC中,AB=AC=10,BC边上的高AD=6,则BC的长为()A、8B、10C、12D、16知识点:勾股定理在数学上的应用知识点的描述:勾股定理的内容:直角三角形中,两直角边的平方和等于斜边的平方。在数学中经常用于求线段的长度。求一条线段的长度的一般方法是:把这条线段放在一个直角三角形中,利用勾股定理。因此一般要添加辅助线,构建直角三角形。答案:D详细解答:在Rt△ACD中,AD=6,AC=10,那么CD2=AC2-AD2=64,CD=8.△ABC中,AB=AC,那么BC边上的高AD平分BC,所以BC=2CD=162、已知平面直角坐标系中有A(1,1)和B(4,4)两点,则连结两点的线段AB的长是()A、3B、C、4D、5答案:B(3也可)详细解答:画出如图所示的示意图,构建如图所示的直角三角形,由A(1,1)和B(4,4)两点的坐标可以知道AC=3,BC=3,所以AB2=AC2+BC2=9+9=18因此AB=3、王英同学从C地沿北偏东600方向走10米到B地,再从B地向正南方向走20米到D地,此时王英同学离C地的距离为()A、10米B、12米C、15米D、米知识点:勾股定理在实际问题中的应用知识点的描述:勾股定理的内容:直角三角形中,两直角边的平方和等于斜边的平方。在实际问题中经常要求距离或长度等等,解决这种问题就要把实际问题转化为数学中的求线段长度问题,求一条线段的长度的一般方法是:把这条线段放在一个直角三角形中,把这条线段作为三角形的一边,利用勾股定理来求。答案:D(10也可)详细解答:根据题意画出如图所示的示意图,由题意可知CB=10米,BD=20米,∠BCE=300,在Rt△BCE中,CB=10米,∠BCE=300,那么BE=5米,因为BC2=BE2+CE2,所以CE2=75。在Rt△DCE中,DE=BD-BE=15米,CD2=DE2+CE2=75+225=300,所以CD=米.24cm32cm24cm32cmA.20cmB.50cmC.40cmD.45cm答案:C详细解答:画出答图如下,则桶内能容下的最长的木棒为图中线段AB的长,由题意知在Rt△ABC中,AC=24cm,BC=32cm,那么AB2=AC2+BC2=242+322=1600,所以AB=40cm4.已知直角三角形一个锐角60°,斜边长为1,那么此直角三角形的周长是().A.B.3C.D.知识点:特殊三角形——含30°角的直角三角形。知识点的描述:含30°角的直角三角形是一个非常重要的图形,要记住这个三角形的角与角之间的关系,也要记住这个三角形中的边和边之间的关系,这些都是中考的重点。特别要记住三边之比1::2,应用它来解决问题方便快捷。答案:D详细解答:如图,直角三角形ABC中,一个锐角∠B=60°,斜边长AB为1,那么BC=,根据勾股定理求出AC=,所以周长1++=4.如图,在直角△ABC中,∠ACB=90°,∠A=15°,CD⊥AB于D,AC边的垂直平分线交AB于E,那么AE∶ED等于()A.1∶1 B.1∶2 C.∶2 D.2∶答案:D详细解答:∵AC边的垂直平分线交AB于E,∴AE=CE,∴∠ACE=∠A=15°,∴∠CED=30°,∵CD⊥AB于D,∠CED=30°,∴AE∶ED=CE∶ED=2∶5.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c。试判断△ABC的形状()。A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形知识点:代数思想和方法在几何中的应用,代数与几何的结合。知识点的描述:勾股定理是用代数的方式来描述一个图形的性质,因此经常要结合代数的内容来解决问题,代数中的配方的思想、乘法公式、因式分解是解决这些问题时用得比较多的。答案:A详细解答:∵a2+b2+c2+338=10a+24b+26c,∴a2-10a+25+b2-24b+144+c2-26c+169=0∴(a-5)2+(b-12)2+(c-13)2=0∴a=5,b=12,c=13,是一组勾股数,利用勾股定理的逆定理判断△ABC是直角三角形。5、△ABC的三边a,b,c满足则△ABC是()等边三角形B腰底不等的等腰三角形C直角三角形D等腰直角三角形答案:A详细解答:∵∴∴∴∴∴△ABC是等边三角形6.一个三角形的三边的比为5:12:13,它的周长为60cm,则它的面积是()A.100B.110C.120D.150知识点:对比值处理的一般方法。知识点的描述:当已知几个比相等的时候,我们经常采用设比值为k的方法,这样往往便于应用条件,也便于计算。答案:C详细解答:∵△ABC三条边的比为a:b:c=5:12:13,则可设a=5k,b=12k,c=13k,∵它的周长为60cm,∴5k+12k+13k=60,k=2,∴△ABC的三边分别为a=10cm,b=24cm,c=26cm,∴a2+b2=102+242=676,c2=262=676,∴a2+b2=c2,△ABC是直角三角形.∴它的面积是×10×24=120(cm2)6.在Rt△ABC中,∠C=90°,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()A.5、4、3B.13、12、5C.10、8、6D.26、24、10答案:D详细解答:斜边与一条直角边之比为13∶5,不妨设a=5k,c=13k,那么b=12k,又周长为60,∴5k+12k+13k=60,解得k=2,∴△ABC的三边分别为a=10,b=24,c=26。7.在△ABC中,∠A=30°,AC=,BC=2,则S△ABC等于()A. B.C.或 D.或知识点:多解问题知识点的描述:中考中经常用多解问题来检查学生思考问题的严密性,从而培养学生研究问题的严谨性,是学生得高分的一个难点,各市的中考题中一般都有多解问题,平常在解决问题的时候要思考再三,不要轻易的下结论,形成严谨的学习习惯和学风。答案:C详细解答:本题没给出图形,作△ABC的AB边的高CD,分两种情况讨论:(1)若高CD在△ABC的内部,如图在Rt△ADC中,∠A=30°,AC=,那么CD=,利用勾股定理得AD=3在Rt△BDC中,BC=2,CD=,那么利用勾股定理得BD=1∴S△ABC=AB×CD=(3+1)×=(2)若高CD在△ABC的外部,如图在Rt△ADC中,∠A=30°,AC=,那么CD=,利用勾股定理得AD=3在Rt△BDC中,BC=2,CD=,那么利用勾股定理得BD=1则S△ABC=AB×CD=(3-1)×=∴S△ABC=或7.若等腰三角形的腰长为4,腰上的高为2,则此三角形的顶角为()A.30° B.150°B.30°或150° D.60°或120°答案:B详细解答:本题没给出图形,作图如下,作△ABC的AC边的高BD,分两种情况讨论:(1)若高BD在△ABC的内部,如图在Rt△ABD中,AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论