




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页关于八年级数学教案集锦10篇关于八年级数学教案集锦10篇八年级数学教案篇1教学目的:知识与技能目的:1.掌握矩形的概念、性质和判别条件.2.进步对矩形的性质和判别在实际生活中的应用才能.过程与方法目的:1.经历探究矩形的有关性质和判别条件的过程,在直观操作活动和简单的说理过程中开展学生的合情推理才能,主观探究习惯,逐步掌握说理的根本方法.2.知道解决矩形问题的根本思想是化为三角形问题来解决,浸透转化归思想.情感与态度目的:1.在操作活动过程中,加深对矩形的的认识,并以此激发学生的探究精神.2.通过对矩形的探究学习,体会它的内在美和应用美.教学重点:矩形的性质和常用判别方法的理解和掌握.教学难点:矩形的性质和常用判别方法的综合应用.教学方法:分析^p启发法教具准备:像框,平行四边形框架教具,多媒体课件.教学过程设计:一.情境导入:演示平行四边形活动框架,引入课题.二.讲授新课:1.归纳矩形的定义:问题:从上面的演示过程可以发现:平行四边形具备什么条件时,就成了矩形?〔学生考虑、答复.〕结论:有一个内角是直角的平行四边形是矩形.八年级数学上册教案2.探究矩形的性质:〔1〕.问题:像框除了“有一个内角是直角”外,还具有哪些一般平行四边形不具备的性质?〔学生考虑、答复.〕结论:矩形的四个角都是直角.〔2〕.探究矩形对角线的性质:让学生进展如下操作后,考虑以下问题:〔幻灯片展示〕在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上,拉动一对不相邻的顶点,改变平行四边形的形状.①.随着∠α的变化,两条对角线的长度分别是怎样变化的?②.当∠α是锐角时,两条对角线的长度有什么关系?当∠α是钝角时呢?③.当∠α是直角时,平行四边形变成矩形,此时两条对角线的长度有什么关系?〔学生操作,考虑、交流、归纳.〕结论:矩形的两条对角线相等.〔3〕.议一议:〔展示问题,引导学生讨论解决.〕①.矩形是轴对称图形吗?假设是,它有几条对称轴?假设不是,简述你的理由.②.直角三角形斜边上的中线等于斜边长的一半,你能用矩形的有关性质解释这结论吗?〔4〕.归纳矩形的性质:〔引导学生归纳,并体会矩形的“对称美”.〕矩形的对边平行且相等;矩形的四个角都是直角;矩形的对角线相等且互相平分;矩形是轴对称图形.例解:〔性质的运用,浸透矩形对角线的“化归”功能.〕如图,在矩形ABCD中,两条对角线AC,BD相交于点O,AB=OA=4厘米.求BD与AD的长.〔引导学生分析^p、解答.〕探究矩形的判别条件:〔由修理桌子引出〕〔1〕.想一想:〔学生讨论、交流、共同学习〕对角线相等的平行四边形是怎样的四边形?为什么?结论:对角线相等的平行四边形是矩形.〔理由可由师生共同分析^p,然后用幻灯片展示完好过程.〕〔2〕.归纳矩形的判别方法:〔引导学生归纳〕有一个内角是直角的平行四边形是矩形.对角线相等的平行四边形是矩形.三.课堂练习:〔出示P98随堂练习题,学生考虑、解答.〕四.新课小结:通过本节课的学习,你有什么收获?〔师生共同从知识与思想方法两方面小结.〕五.作业设计:P99习题4.6第1、2、3题.板书设计:4.矩形矩形的定义:矩形的性质:前面知识的小系统图示:三.矩形的判别条件:例1课后反思:在平行四边形及菱形的教学后。学生已经学会自主探究的方法,自己动手猜想验证一些矩形的特殊性质。一些相关矩形的计算也学会应用转化为直角三角形的方法来解决。总的看来这节课学生掌握的还不错。当然合情推理的才能要渐渐的纯熟。不可能一下就掌握纯熟。八年级数学教案篇2一、学习目的及重、难点:1、理解方差的定义和计算公式。2、理解方差概念的产生和形成的过程。3、会用方差计算公式来比较两组数据的波动大小。重点:方差产生的必要性和应用方差公式解决实际问题。难点:理解方差公式二、自主学习:(一)知识我先懂:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。给力小贴士:方差越小说明这组数据越。波动性越。(二)自主检测小练习:1、一组数据为2、0、-1、3、-4,那么这组数据的方差为。2、甲、乙两组数据如下:甲组:1091181213107;乙组:7891011121112.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.三、新课讲解:引例:问题:从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、10、13、7、13、10、8、11、8;乙:8、13、12、11、10、12、7、7、10、10;问:(1)哪种农作物的苗长的比较高(我们可以计算它们的平均数:=)(2)哪种农作物的苗长得比较整齐?(我们可以计算它们的极差,你发现了)归纳:方差:设有n个数据,各数据与它们的平均数的差的平方分别是我们用它们的平均数,表示这组数据的方差:即用来表示。(一)例题讲解:例1、段巍和金志强两人参加体育工程训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?、测试次数第1次第2次第3次第4次第5次段巍1314131213金志强1013161412给力提示:先求平均数,在利用公式求解方差。(二)小试身手1、.甲、乙两名学生在一样的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数是,但S=,S=,那么SS,所以确定去参加比赛。1、求以下数据的众数:(1)3,2,5,3,1,2,3(2)5,2,1,5,3,5,2,22、8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16岁的6人。8年级一班学生年龄的平均数,中位数,众数分别是多少?四、课堂小结方差公式:给力提示:方差越小说明这组数据越。波动性越。每课一首诗:求方差,有公式;先平均,再求差;求平方,再平均;所得数,是方差。五、课堂检测:1、小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)小爽10.810.911.010.711.111.110.811.010.710.9小兵10.910.910.810.811.010.910.811.110.910.8假设根据这几次成绩选拔一人参加比赛,你会选谁呢?六、课后作业:必做题:教材141页练习1、2选做题:练习册对应部分习题七、学习小札记:写下你的收获,交流你的经历,分享你的成果,你会感到无比的快乐!八年级数学教案篇3学习目的:1、知道线段的垂直平分线的概念,探究并掌握成轴对称的两个图形全等,对称轴是对称点连线的垂直平分线等性质.2、经历探究轴对称的性质的活动过程,积累数学活动经历,进一步开展空间观念和有条理地考虑和表达才能.3、利用轴对称的根本性质解决实际问题。学习重点:灵敏运用对应点所连的线段被对称轴垂直平分、对应线段相等、对应角相等等性质。学习难点:轴对称的性质的理解和拓展运用。学习过程:一、探究活动如右图所示,在纸上任意画一点A,把纸对折,用针在点A处穿孔,再把纸展开,并连接两针孔A、A.两针孔A、A和线段AA与折痕MN之间有什么关系?1、请同学们按要求画点、折纸、扎孔,仔细观察你所做的图形,然后研究:两针孔A、A与折痕MN之间有什么关系?线段AA与折痕MN之间又有什么关系呢?两针孔A、A,直线MN线段AA.2、那么直线MN为什么会垂直平分线段AA呢?例如,如图,对称轴MN就是对称点A、A连线(即线段AA)的垂直平分线.4.如图,在纸上再任画一点B,同样地,折纸、穿孔、展开,并连接AB、AB、BB.线段AB与AB有什么关系?线段BB与MN有什么关系?5.如图,再在纸上任画一点C,并仿照上面进展操作.(1)线段AC与AC有什么关系?BC与BC呢?线段CC与MN有什么关系?(2)A与A有什么关系?B与B呢?△ABC与△ABC有什么关系?为什么?(3)轴对称有哪些性质?6.轴对称的性质:(1)成轴对称的两个图形全等.(2)假设两个图形成轴对称,那么对称轴是对称点连线的垂直平分线.二、例题讲解例1、(1)如图,A、B、C、D的对称点分别是,线段AC、AB的对应线段分别是,CD=,CBA=,ADC=.(2)连接AF、BE,那么线段AF、BE有什么关系?并用测量的方法验证.(3)AE与BF平行吗?为什么?(4)AE与BF平行,能说明轴对称图形对称点的连线一定互相平行吗?(5)延长线段BC、FG,作直线AB、EG,你有什么发现吗?八年级数学教案篇4一、学生起点分析^p通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析^p《数不够用了》是义务教育课程标准北师大版实验教科书八年级〔上〕第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在详细的实例中,通过操作、估算、分析^p等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目的是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手才能和探究精神;④能正确地进展判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与稳固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回忆,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进展起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数〔或分数〕吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深化感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】【议一议】:,请问:①可能是整数吗?②可能是分数吗?【释一释】:释1.满足的为什么不是整数?释2.满足的为什么不是分数?【忆一忆】:让学生回忆“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这说明:有理数不够用了,为“新数”〔无理数〕的学习奠定了根底【找一找】:在以下正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”〔无理数〕的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与稳固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形〔右1〕2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数【仿一仿】:例:在数轴上表示满足的解:〔右2〕仿:在数轴上表示满足的【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!〔右3〕目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,稳固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、互相补充,学会进展概括总结.第六环节:布置作业习题2.1六、教学设计反思〔一〕生活是数学的泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓重兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经历呈现出来,然后进展大胆置疑,生活中的数并不都是有理数,那它们终究是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的气氛.在教学中,不要盲目的抢时间,让学生可以充分的考虑与操作.〔二〕化抽象为详细常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进展解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.〔三〕强化知识间联络,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级数学教案篇5一、教学目的1.灵敏应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与断定定理之间关系的认识.二、重点、难点1.重点:灵敏应用勾股定理及逆定理解决实际问题.2.难点:灵敏应用勾股定理及逆定理解决实际问题.3.难点的打破方法:三、课堂引入创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.四、例习题分析^p例1〔P83例2〕分析^p:⑴理解方位角,及方位名词;⑵依题意画出图形;⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;⑸∠PRS=∠QPR—∠QPS=45°.小结:让学生养成“三边求角,利用勾股定理的逆定理”的意识.例2〔补充〕一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.分析^p:⑴假设判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.解略.此题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.八年级数学教案篇6一、学生起点分析^p学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经历,如:两直线平行,有什么样的结论?反之,满足什么条件的两直线是平行?因此,本课时由勾股定理出发逆向考虑获得逆命题,学生应该已经具备这样的意识,但详细研究中可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。二、学习任务分析^p本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探究勾股定理的逆定理并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过详细的数,增加对勾股数的直观体验。为此确定教学目的:●知识与技能目的1.理解勾股定理逆定理的详细内容及勾股数的概念;2.能根据所给三角形三边的条件判断三角形是否是直角三角形。●过程与方法目的1.经历一般规律的探究过程,开展学生的抽象思维才能;2.经历从实验到验证的过程,开展学生的数学归纳才能。●情感与态度目的1.体验生活中的数学的应用价值,感受数学与人类生活的亲密联络,激发学生学数学、用数学的兴趣;2.在探究过程中体验成功的喜悦,树立学习的自信心。教学重点理解勾股定理逆定理的详细内容。三、教法学法1.教学方法:实验猜想归纳论证本节课的教学对象是初二学生,他们的参与意识较强,思维活泼,对通过实验获得数学结论已有一定的体验但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目的,我力求从以下三个方面对学生进展引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,通过以旧引新,顺势教学过程;(3)利用探究,研究手段,通过思维深化,领悟教学过程。2.课前准备教具:教材、电脑、多媒体课件。学具:教材、笔记本、课堂练习本、文具。四、教学过程设计本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:登高望远;第五环节:稳固进步;第六环节:交流小结;第七环节:布置作业。第一环节:情境引入内容:情境:1.直角三角形中,三边长度之间满足什么样的关系?2.假设一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?意图:通过情境的创设引入新课,激发学生探究热情。效果:从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的根底。第二环节:合作探究内容1:探究下面有三组数,分别是一个三角形的三边长,①5,12,13;②7,24,25;③8,15,17;并答复这样两个问题:1.这三组数都满足吗?2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。意图:通过学生的合作探究,得出假设一个三角形的三边长,满足,那么这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的开展规律。效果:经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足,可以构成直角三角形;②7,24,25满足,可以构成直角三角形;③8,15,17满足,可以构成直角三角形。从上面的分组实验很容易得出如下结论:假设一个三角形的三边长,满足,那么这个三角形是直角三角形内容2:说理提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:假设一个三角形的三边长,满足,那么这个三角形是直角三角形满足的三个正整数,称为勾股数。本卷须知:为了让学生确认该结论,需要进展说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。活动3:反思总结提问:1.同学们还能找出哪些勾股数呢?2.今天的结论与前面学习勾股定理有哪些异同呢?3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?意图:进一步让学生认识该定理与勾股定理之间的关系第三环节:小试牛刀内容:1.以下哪几组数据能作为直角三角形的三边长?请说明理由。①9,12,15;②15,36,39;③12,35,36;④12,18,22解答:①②2.一个三角形的三边长分别是,那么这个三角形的面积是()A250B150C200D不能确定解答:B3.如图1:在中,于,,那么是()A等腰三角形B锐角三角形C直角三角形D钝角三角形解答:C4.将直角三角形的三边扩大一样的倍数后,(图1)得到的三角形是()A直角三角形B锐角三角形C钝角三角形D不能确定解答:A意图:通过练习,加强对勾股定理及勾股定理逆定理认识及应用效果每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。第四环节:登高望远内容:1.一个零件的形状如图2所示,按规定这个零件中都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?解答:符合要求,又,2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经历,船长指挥船左传90,继续航行70海里,那么距出发地250海里,你能判断船转弯后,是否沿正西方向航行?解答:由题意画出相应的图形AB=240海里,BC=70海里,,AC=250海里;在△ABC中=(250+240)(250-240)=4900==即△ABC是Rt△答:船转弯后,是沿正西方向航行的。意图:利用勾股定理逆定理解决实际问题,进一步稳固该定理。效果:学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形(),以便于计算。第五环节:稳固进步内容:1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流。解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF2.如图5,哪些是直角三角形,哪些不是,说说你的理由?图4图5解答:④⑤是直角三角形,①②③⑥不是直角三角形意图:第一题考察学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考察学生如何利用网格进展计算,从而解决问题。效果:学生在对所学知识有一定的熟悉度后,可以快速做答并能简要说明理由即可。注意防漏解及网格的应用。第六环节:交流小结内容:师生互相交流总结出:1.今天所学内容①会利用三角形三边数量关系判断一个三角形是直角三角形;②满足的三个正整数,称为勾股数;2.从今天所学内容及所作练习中总结出的经历与方法:①数学是于生活又效劳于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的开展规律;③利用三角形三边数量关系判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将作适当变形,便于计算。意图:鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立抑制困难和运用知识解决问题的成功经历,进一步体会数学的应用价值,开展运用数学的信心和才能,初步形成积极参与数学活动的意识。效果:学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。第七环节:布置作业课本习题1.4第1,2,4题。五、教学反思:1.充分尊重教材,以勾股定理的逆向思维形式引入假设一个三角形的三边长,满足,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的开展规律。3.在利用今天所学知识解决实际问题时,引导学生擅长对公式变形,便于简便计算。4.注重对学习新知理解应用偏困难的学生的进一步关注。5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。由于本班学生整体程度较高,因此本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进展适当的删减或调整。附:板书设计能得到直角三角形吗情景引入小试牛刀:登高望远八年级数学教案篇7知识要点1、函数的概念:一般地,在某个变化过程中,有两个变量x和y,假设给定一个x值,相应地就确定了一个y值,那么称y是x的函数,其中x是自变量,y是因变量。2、一次函数的概念:假设两个变量x,y间的关系式可以表示成y=kx+b(k0,b为常数)的形式,那么称y是x的一次函数,x为自变量,y为因变量。特别地,当b=0时,称y是x的正比例函数。正比例函数是一次函数的特殊形式,因此正比例函数都是一次函数,而一次函数不一定都是正比例函数.3、正比例函数y=kx的性质(1)、正比例函数y=kx的图象都经过原点(0,0),(1,k)两点的一条直线;(2)、当k0时,图象都经过一、三象限;当k0时,图象都经过二、四象限(3)、当k0时,y随x的增大而增大;当k0时,y随x的增大而减小。4、一次函数y=kx+b的性质(1)、经过特殊点:与x轴的交点坐标是,与y轴的交点坐标是.(2)、当k0时,y随x的增大而增大当k0时,y随x的增大而减小(3)、k值一样,图象是互相平行(4)、b值一样,图象相交于同一点(0,b)(5)、影响图象的两个因素是k和b①k的正负决定直线的方向②b的`正负决定y轴交点在原点上方或下方5.五种类型一次函数解析式确实定确定一次函数的解析式,是一次函数学习的重要内容。(1)、根据直线的解析式和图像上一个点的坐标,确定函数的解析式例1、假设函数y=3x+b经过点(2,-6),求函数的解析式。解:把点(2,-6)代入y=3x+b,得-6=32+b解得:b=-12函数的解析式为:y=3x-12(2)、根据直线经过两个点的坐标,确定函数的解析式例2、直线y=kx+b的图像经过A(3,4)和点B(2,7),求函数的表达式。解:把点A(3,4)、点B(2,7)代入y=kx+b,得,解得:函数的解析式为:y=-3x+13(3)、根据函数的图像,确定函数的解析式例3、如图1表示一辆汽车油箱里剩余油量y(升)与行驶时间x(小时)之间的关系.求油箱里所剩油y(升)与行驶时间x(小时)之间的函数关系式,并且确定自变量x的取值范围。(4)、根据平移规律,确定函数的解析式例4、如图2,将直线向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.解:直线经过点(0,0)、点(2,4),直线向上平移1个单位后,这两点变为(0,1)、(2,5),设这个一次函数的解析式为y=kx+b,得,解得:,函数的解析式为:y=2x+1(5)、根据直线的对称性,确定函数的解析式例5、直线y=kx+b与直线y=-3x+6关于y轴对称,求k、b的值。例6、直线y=kx+b与直线y=-3x+6关于x轴对称,求k、b的值。例7、直线y=kx+b与直线y=-3x+6关于原点对称,求k、b的值。经典训练:训练1:1、梯形上底的长为x,下底的长是10,高是6,梯形的面积y随上底x的变化而变化。(1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么?(2)假设y是x的函数,试写出y与x之间的函数关系式。训练2:1.函数:①y=-xx;②y=-1;③y=;④y=x2+3x-1;⑤y=x+4;⑥y=3.6x,一次函数有_____;正比例函数有____________(填序号).2.函数y=(k2-1)x+3是一次函数,那么k的取值范围是()A.k1B.k-1C.k1D.k为任意实数.3.假设一次函数y=(1+2k)x+2k-1是正比例函数,那么k=_______.训练3:1.正比例函数y=kx,假设y随x的增大而减小,那么k______.2.一次函数y=mx+n的图象如图,那么下面正确的选项是()A.m0B.m0C.m0D.m03.一次函数y=-2x+4的图象经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____.4.一次函数y=(k-2)x+(k+2),假设它的图象经过原点,那么k=_____;假设y随x的增大而增大,那么k__________.5.假设一次函数y=kx-b满足kb0,且函数值随x的减小而增大,那么它的大致图象是图中的()训练4:1、正比例函数的图象经过点A(-3,5),写出这正比例函数的解析式.2、一次函数的图象经过点(2,1)和(-1,-3).求此一次函数的解析式.3、一次函数y=kx+b的图象如上图所示,求此一次函数的解析式。4、一次函数y=kx+b,在x=0时的值为4,在x=-1时的值为-2,求这个一次函数的解析式。5、y-1与x成正比例,且x=-2时,y=-4.(1)求出y与x之间的函数关系式;(2)当x=3时,求y的值.一、填空题(每题2分,共26分)1、是整数,且一次函数的图象不过第二象限,那么为.2、假设直线和直线的交点坐标为,那么.3、一次函数和的图象与轴分别相交于点和点,、关于轴对称,那么.4、,与成正比例,与成反比例,当时,时,,那么当时,.5、函数,假设,那么的取值范围是.6、一个长,宽的矩形场地要扩建成一个正方形场地,设长增加,宽增加,那么与的函数关系是.自变量的取值范围是.且是的函数.7、如图是函数的一部分图像,(1)自变量的取值范围是;(2)当取时,的最小值为;(3)在(1)中的取值范围内,随的增大而.8、一次函数和的图象交点的横坐标为,那么,一次函数的图象与两坐标轴所围成的三角形的面积为,那么.9、一次函数的图象经过点,且它与轴的交点和直线与轴的交点关于轴对称,那么这个一次函数的解析式为.10、一次函数的图象过点和两点,且,那么,的取值范围是.11、一次函数的图象如图,那么与的大小关系是,当时,是正比例函数.12、为时,直线与直线的交点在轴上.13、直线与直线的交点在第三象限内,那么的取值范围是.二、选择题(每题3分,共36分)14、图3中,表示一次函数与正比例函数、是常数,且的图象的是()15、假设直线与的交点在轴上,那么等于()A.4B.-4C.D.16、直线经过一、二、四象限,那么直线的图象只能是图4中的()17、直线如图5,那么以下条件正确的选项是()18、直线经过点,,那么必有()A.19、假设,,那么直线不通过()A.第一象限B.第二象限C.第三象限D.第四象限20、关于的一次函数在上的函数值总是正数,那么的取值范围是A.B.C.D.都不对21、如图6,两直线和在同一坐标系内图象的位置可能是()图622、一次函数与的图像都经过,且与轴分别交于点B,,那么的面积为()A.4B.5C.6D.723、直线与轴的交点在轴的正半轴,以下结论:①;②;③;④,其中正确的个数是()A.1个B.2个C.3个D.4个24、,那么的图象一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限25、如图7,A、B两站相距42千米,甲骑自行车匀速行驶,由A站经P处去B站,上午8时,甲位于距A站18千米处的P处,假设再向前行驶15分钟,使可到达距A站22千米处.设甲从P处出发小时,距A站千米,那么与之间的关系可用图象表示为()三、解答题(1~6题每题8分,7题10分,共58分)26、如图8,在直角坐标系内,一次函数的图象分别与轴、轴和直线相交于、、三点,直线与轴交于点D,四边形OBCD(O是坐标原点)的面积是10,假设点A的横坐标是,求这个一次函数解析式.27、一次函数,当时,函数图象有何特征?请通过不同的取值得出结论?28、某油库有一大型储油罐,在开始的8分钟内,只开进油管,不开出油管,油罐的油进至24吨(原油罐没储油)后将进油管和出油管同时翻开16分钟,油罐内的油从24吨增至40吨,随后又关闭进油管,只开出油管,直到将油罐内的油放完,假设在单位时间内进油管与出油管的流量分别保持不变.(1)试分别写出这一段时间内油的储油量Q(吨)与进出油的时间t(分)的函数关系式.(2)在同一坐标系中,画出这三个函数的图象.29、某市电力公司为了鼓励居民用电,采用分段计费的方法计算电费:每月不超过100度时,按每度0.57元计费;每月用电超过100度时,其中的100度按原标准收费;超过部分按每度0.50元计费.(1)设用电度时,应交电费元,当100和100时,分别写出关于的函数关系式.(2)小王家第一季度交纳电费情况如下:月份一月份二月份三月份合计交费金额76元63元45元6角184元6角问小王家第一季度共用电多少度?30、某地上年度电价为0.8元,年用电量为1亿度.本年度方案将电价调至0.55~0.75元之间,经测算,假设电价调至元,那么本年度新增用电量(亿度)与(0.4)(元)成反比例,又当=0.65时,=0.8.(1)求与之间的函数关系式;(2)假设每度电的本钱价为0.3元,那么电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量(实际电价-本钱价)]31、汽车从A站经B站后匀速开往C站,分开B站9分时,汽车离A站10千米,又行驶一刻钟,离A站20千米.(1)写出汽车与B站间隔与B站开出时间的关系;(2)假设汽车再行驶30分,离A站多少千米?32、甲乙两个仓库要向A、B两地运送水泥,甲库可调出100吨水泥,乙库可调出80吨水泥,A地需70吨水泥,B地需110吨水泥,两库到A,B两地的路程和运费如下表(表中运费栏元/(吨、千米)表示每吨水泥运送1千米所需人民币)路程/千米运费(元/吨、千米)甲库乙库甲库乙库A地20151212B地2520108(1)设甲库运往A地水泥吨,求总运费(元)关于(吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A、B两地多少吨水泥时,总运费最省?最省的总运费是多少?八年级数学教案篇8教学目的1.使学生纯熟地运用等腰三角形的性质求等腰三角形内角的角度。2.熟识等边三角形的性质及断定.2.通过例题教学,帮助学生总结代数法求几何角度,线段长度的方法。教学重点等腰三角形的性质及其应用。教学难点简洁的逻辑推理。教学过程一、复习稳固1.表达等腰三角形的性质,它是怎么得到的?等腰三角形的两个底角相等,也可以简称等边对等角。把等腰三角形对折,折叠两部分是互相重合的,即AB与AC重合,点B与点C重合,线段BD与CD也重合,所以C。等腰三角形的顶角平分线,底边上的中线和底边上的高线互相重合,简称三线合一。由于AD为等腰三角形的对称轴,所以BD=CD,AD为底边上的中线;BAD=CAD,AD为顶角平分线,ADB=ADC=90,AD又为底边上的高,因此三线合一。2.假设等腰三角形的两边长为3和4,那么其周长为多少?二、新课在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。我们把三条边都相等的三角形叫做等边三角形。等边三角形具有什么性质呢?1.请同学们画一个等边三角形,用量角器量出各个内角的度数,并提出猜想。2.你能否用的知识,通过推理得到你的猜想是正确的?等边三角形是特殊的等腰三角形,由等腰三角形等边对等角的性质得到B=C,又由B+C=180,从而推出B=C=60。3.上面的条件和结论如何表达?等边三角形的各角都相等,并且每一个角都等于60。等边三角形是轴对称图形吗?假设是,有几条对称轴?等边三角形也称为正三角形。例1.在△ABC中,AB=AC,D是BC边上的中点,B=30,求1和ADC的度数。分析^p:由AB=AC,D为BC的中点,可知AB为BC底边上的中线,由三线合一可知AD是△ABC的顶角平分线,底边上的高,从而ADC=90,BAC,由于B=30,BAC可求,所以1可求。问题1:此题假设将D是BC边上的中点这一条件改为AD为等腰三角形顶角平分线或底边BC上的高线,其它条件不变,计算的结果是否一样?问题2:求1是否还有其它方法?三、练习稳固1.判断以下命题,对的打,错的打。a.等腰三角形的角平分线,中线和高互相重合()b.有一个角是60的等腰三角形,其它两个内角也为60()2.如图(2),在△ABC中,AB=AC,AD为BAC的平分线,且2=25,求ADB和B的度数。四、小结由等腰三角形的性质可以推出等边三角形的各角相等,且都为60。三线合一性质在实际应用中,只要推出其中一个结论成立,其他两个结论一样成立,所以关键是寻找其中一个结论成立的条件。五、作业1.课本P127─7,92、补充:如图(3),△ABC是等边三角形,BD、CE是中线,求CBD,BOE,BOC,EOD的度数。(一)课本P127─1、3、4、8题.八年级数学教案篇9一、教学目的1.理解分式、有理式的概念.2.理解分式有意义的条件,能纯熟地求出分式有意义的条件.二、重点、难点1.重点:理解分式有意义的条件.2.难点:能纯熟地求出分式有意义的条件.三、课堂引入1.让学生填写P127[考虑],学生自己依次填出:,.2.学生看问题:一艘轮船在静水中的最大航速为30/h,它沿江以最大航速顺流航行90所用时间,与以最大航速逆流航行60所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为v/h.轮船顺流航行90所用的时间为小时,逆流航行60所用时间小时,所以=.3.以上的式子,有什么共同点?它们与分数有什么一样点和不同点?四、例题讲解P128例1.当以下分式中的字母为何值时,分式有意义.[分析^p]分式有意义,就可以知道分式的分母不为零,进一步解出字母的取值范围.[补充提问]假设题目为:当字母为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2.当为何值时,分式的值为0?〔1〕〔2〕〔3〕[分析^p]分式的值为0时,必须同时满足两个条件:分母不能为零;分子为零,这样求出的的解集中的公共部分,就是这类题目的解.[答案]〔1〕=0〔2〕=2〔3〕=1五、随堂练习1.判断以下各式哪些是整式,哪些是分式?9x+4,,,,,2.当x取何值时,以下分式有意义?〔1〕〔2〕〔3〕3.当x为何值时,分式的值为0?〔1〕〔2〕〔3〕六、课后练习1.以下代数式表示以下数量关系,并指出哪些是正是?哪些是分式?〔1〕甲每小时做x个零件,那么他8小时做零件个,做80个零件需小时.〔2〕轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时.〔3〕x与的差于4的商是.2.当x取何值时,分式无意义?3.当x为何值时,分式的值为0?八年级数学教案篇10教学建议知识构造重难点分析^p本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年休闲农业与乡村旅游市场潜力深度解析报告
- 技术如何促进远程教育的情感联系
- 教育心理学视角下的情感智能教学案例分析
- 2025年中国外导墨行业投资前景及策略咨询研究报告
- 2025年中国圆角两格背柜行业投资前景及策略咨询研究报告
- 2025届广东省清远市高三下学期二模物理试题(含答案)
- 学习环境对学习动机与成效的影响研究
- 药品智能仓储管理系统行业跨境出海项目商业计划书
- 艺术品收藏与展示区行业跨境出海项目商业计划书
- 亲子阅读行业深度调研及发展项目商业计划书
- 分数加减法计算常见错误及分析
- 轨道交通信号基础智慧树知到答案章节测试2023年同济大学
- 妇产科学智慧树知到答案章节测试2023年浙江大学
- 农村公路建设标准
- 2015-2022年深圳职业技术学院高职单招语文/数学/英语笔试参考题库含答案解析
- 【最新!强基计划模拟试题-含答案!】语文
- YY/T 0661-2008外科植入物用聚(L-乳酸)树脂的标准规范
- GB/T 6188-2000螺栓和螺钉用内六角花形
- 足球比赛运动活动邀请函Word模板
- 硐室爆破资料课件
- 防性侵防溺水防校园欺凌主题班会课件
评论
0/150
提交评论