2011年全国高考理科数学试题及答案-新课标_第1页
2011年全国高考理科数学试题及答案-新课标_第2页
2011年全国高考理科数学试题及答案-新课标_第3页
2011年全国高考理科数学试题及答案-新课标_第4页
2011年全国高考理科数学试题及答案-新课标_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2011年普通高等学校招生全国统一考试理科数学第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数的共轭复数是 A. B. C. D.2.下列函数中,既是偶函数哦、又在(0,)单调递增的函数是 A. B. C. D.3.执行右面的程序框图,如果输入的N是6,那么输出的p是 A.120 B.720 C.1440 D.50404.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A. B. C. D.5.已知角的顶点与原点重合,始边与轴的正半轴重合,终边在直线上,则= A. B. C. D.6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,为C的实轴长的2倍,则C的离心率为 A. B. C.2 D.38.的展开式中各项系数的和为2,则该展开式中常数项为 A.-40 B.-20 C.20 D.409.由曲线,直线及轴所围成的图形的面积为 A. B.4 C. D.610.已知a与b均为单位向量,其夹角为,有下列四个命题 其中的真命题是 A. B. C. D.11.设函数的最小正周期为,且,则

A.在单调递减 B.在单调递减

C.在单调递增 D.在单调递增12.函数的图像与函数的图像所有交点的横坐标之和等于

A.2 B.4 C.6 D.8请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.22.(本小题满分10分)选修4-1:几何证明选讲如图,D,E分别为的边AB,AC上的点,且不与的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程的两个根.(I)证明:C,B,D,E四点共圆;(II)若,且求C,B,D,E所在圆的半径.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.(I)求的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.24.(本小题满分10分)选修4-5:不等式选讲设函数,其中.(I)当a=1时,求不等式的解集.(II)若不等式的解集为{x|,求a的值.2011年普通高等学校招生全国统一考试理科数学试卷参考答案一、选择题(1)C(2)B(3)B(4)A(5)B(6)D(7)B(8)D(9)C(10)A(11)A(12)D二、填空题(13)-6(14)(15)(16)三、解答题(17)解:(Ⅰ)设数列{an}的公比为q,由得所以。由条件可知c>0,故。由得,所以。故数列{an}的通项式为an=。(Ⅱ

)故所以数列的前n项和为(18)解:(Ⅰ)因为,由余弦定理得从而BD2+AD2=AB2,故BDAD又PD底面ABCD,可得BDPD所以BD平面PAD.故PABD(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则,,,。设平面PAB的法向量为n=(x,y,z),则即因此可取n=设平面PBC的法向量为m,则可取m=(0,-1,)故二面角A-PB-C的余弦值为(19)解(Ⅰ)由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为-2240.040.540.42X的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.68(20)解:(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1). 所以=(-x,-1-y),=(0,-3-y),=(x,-2). 再由题意可知(+)•

=0,即(-x,-4-2y)•

(x,-2)=0. 所以曲线C的方程式为y=x-2. (Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x因此直线的方程为,即。则O点到的距离.又,所以 当=0时取等号,所以O点到距离的最小值为2.(21)解: (Ⅰ) 由于直线的斜率为,且过点,故即 解得,。 (Ⅱ)由(Ⅰ)知,所以 。考虑函数,则 。 (i)设,由知,当时,。而,故 当时,,可得;当x(1,+)时,h(x)<0,可得h(x)>0从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.(ii)设0<k<1.由于当x(1,)时,(k-1)(x2+1)+2x>0,故(x)>0,而 h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。(iii)设k1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得h(x)<0,与题设矛盾。 综合得,k的取值范围为(-,0]解:(2)由(1)知.

故要证:只需证

为去分母,故分x>1与0<x<1两种情况讨论:当x>1时,需证即即需证.(1)设,则

由x>1得,所以在(1,+)上为减函数.又因g(1)=0

所以当x>1时g(x)<0即(1)式成立.同理0<x<1时,需证(2)

而由0<x<1得,所以在(0,1)上为增函数.又因g(1)=0

所以当0<x<1时g(x)<0即(2)式成立.综上所证,知要证不等式成立.点评:抓住基本思路,去分母化简问题,不可死算.(22)解:(I)连接DE,根据题意在△ADE和△ACB中, AD×AB=mn=AE×AC, 即.又∠DAE=∠CAB,从而△ADE∽△ACB 因此∠ADE=∠ACB 所以C,B,D,E四点共圆。 (Ⅱ)m=4,n=6时,方程x2-14x+mn=0的两根为x1=2,x2=12.故AD=2,AB=12.取CE的中点G,DB的中点F,分别过G,F作AC,AB的垂线,两垂线相交于H点,连接DH.因为C,B,D,E四点共圆,所以C,B,D,E四点所在圆的圆心为H,半径为DH.由于∠A=900,故GH∥AB,HF∥AC.HF=AG=5,DF=(12-2)=5.故C,B,D,E四点所在圆的半径为5(23)解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以 即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论