江西省萍乡市莲花县市级名校2023年中考一模数学试题含解析_第1页
江西省萍乡市莲花县市级名校2023年中考一模数学试题含解析_第2页
江西省萍乡市莲花县市级名校2023年中考一模数学试题含解析_第3页
江西省萍乡市莲花县市级名校2023年中考一模数学试题含解析_第4页
江西省萍乡市莲花县市级名校2023年中考一模数学试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A.30厘米、45厘米;B.40厘米、80厘米;C.80厘米、120厘米;D.90厘米、120厘米2.计算(1-)÷的结果是()A.x-1 B. C. D.3.若分式在实数范围内有意义,则实数的取值范围是()A. B. C. D.4.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于()A.35° B.45° C.55° D.25°5.“辽宁号”航母是中国海军航空母舰的首舰,标准排水量57000吨,满载排水量67500吨,数据67500用科学记数法表示为A.675×102 B.67.5×102 C.6.75×104 D.6.75×1056.下列运算正确的是()A.a2+a2=a4 B.(a+b)2=a2+b2 C.a6÷a2=a3 D.(﹣2a3)2=4a67.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,则t的取值范围是(

)A.-5<t≤4

B.3<t≤4

C.-5<t<3

D.t>-58.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为()A.10 B.9 C.8 D.79.如图所示的几何体的俯视图是()A. B. C. D.10.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.30° B.25°C.20° D.15°二、填空题(共7小题,每小题3分,满分21分)11.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.12.方程的解是__________.13.在实数范围内分解因式:x2y﹣2y=_____.14.如图,在边长为6的菱形ABCD中,分别以各顶点为圆心,以边长的一半为半径,在菱形内作四条圆弧,则图中阴影部分的周长是___结果保留15.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.16.已知、为两个连续的整数,且,则=________.17.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是_____.三、解答题(共7小题,满分69分)18.(10分).19.(5分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?20.(8分)根据函数学习中积累的知识与经验,李老师要求学生探究函数y=+1的图象.同学们通过列表、描点、画图象,发现它的图象特征,请你补充完整.(1)函数y=+1的图象可以由我们熟悉的函数的图象向上平移个单位得到;(2)函数y=+1的图象与x轴、y轴交点的情况是:;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是.21.(10分)如图1,点为正的边上一点(不与点重合),点分别在边上,且.(1)求证:;(2)设,的面积为,的面积为,求(用含的式子表示);(3)如图2,若点为边的中点,求证:.图1图222.(10分)计算:.23.(12分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元.求该省第二、三季度投资额的平均增长率.24.(14分)如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(2)画出△ABC绕原点O旋转180°后得到的图形△A2B2C2,并写出B2点的坐标;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.2、B【解析】

先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(-)÷=•=,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.3、D【解析】

根据分式有意义的条件即可求出答案.【详解】解:由分式有意义的条件可知:,,故选:.【点睛】本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.4、A【解析】

根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.5、C【解析】

根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).【详解】67500一共5位,从而67500=6.75×104,故选C.6、D【解析】

根据完全平方公式、合并同类项、同底数幂的除法、积的乘方,即可解答.【详解】A、a2+a2=2a2,故错误;B、(a+b)2=a2+2ab+b2,故错误;C、a6÷a2=a4,故错误;D、(-2a3)2=4a6,正确;故选D.【点睛】本题考查了完全平方公式、同底数幂的除法、积的乘方以及合并同类项,解决本题的关键是熟记公式和法则.7、B【解析】

先利用抛物线的对称轴方程求出m得到抛物线解析式为y=-x2+4x,配方得到抛物线的顶点坐标为(2,4),再计算出当x=1或3时,y=3,结合函数图象,利用抛物线y=-x2+4x与直线y=t在1<x<3的范围内有公共点可确定t的范围.【详解】∵抛物线y=-x2+mx的对称轴为直线x=2,∴,解之:m=4,∴y=-x2+4x,当x=2时,y=-4+8=4,∴顶点坐标为(2,4),∵关于x的-元二次方程-x2+mx-t=0(t为实数)在l<x<3的范围内有解,当x=1时,y=-1+4=3,当x=2时,y=-4+8=4,∴3<t≤4,故选:B【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.8、D【解析】分析:先根据多边形的内角和公式(n﹣2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.详解:∵五边形的内角和为(5﹣2)•180°=540°,∴正五边形的每一个内角为540°÷5=18°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已经有3个五边形,∴1﹣3=7,即完成这一圆环还需7个五边形.故选D.点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.9、D【解析】试题分析:根据俯视图的作法即可得出结论.从上往下看该几何体的俯视图是D.故选D.考点:简单几何体的三视图.10、B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,二、填空题(共7小题,每小题3分,满分21分)11、35°【解析】∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,∴PE是△ABD的中位线,PF是△BDC的中位线,∴PE=AD,PF=BC,又∵AD=BC,∴PE=PF,∴∠PFE=∠PEF=35°.故答案为35°.12、.【解析】

根据解分式方程的步骤依次计算可得.【详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.13、y(x+)(x﹣)【解析】

先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为y(x+)(x-).【点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.14、【解析】

直接利用已知得出所有的弧的半径为3,所有圆心角的和为:菱形的内角和,即可得出答案.【详解】由题意可得:所有的弧的半径为3,所有圆心角的和为:菱形的内角和,故图中阴影部分的周长是:6π.故答案为6π.【点睛】本题考查了弧长的计算以及菱形的性质,正确得出圆心角是解题的关键.15、1.1【解析】

求出EC,根据菱形的性质得出AD∥BC,得出相似三角形,根据相似三角形的性质得出比例式,代入求出即可.【详解】∵DE=1,DC=3,∴EC=3-1=2,∵四边形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案为1.1.【点睛】此题主要考查了相似三角形的判定与性质,解题关键是根据菱形的性质证明△DEF∽△CEB,然后根据相似三角形的性质可求解.16、11【解析】

根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案.【详解】∵a<<b,a、b为两个连续的整数,

∴,

∴a=5,b=6,

∴a+b=11.

故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.17、2+【解析】

试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,PA=2,根据勾股定理得:PE=1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圆心是(2,a),∴a=PD+DC=2+.【点睛】本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.三、解答题(共7小题,满分69分)18、5﹣.【解析】

根据特殊角的三角函数值进行计算即可.【详解】原式==3﹣+4﹣2=5﹣.【点睛】本题考查了特殊角的三角函数值,是基础题目比较简单.19、自行车的速度是12km/h,公共汽车的速度是1km/h.【解析】

设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解分式方程即可.【详解】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解得:x=12,经检验,x=12是原分式方程的解,∴3x=1.答:自行车的速度是12km/h,公共汽车的速度是1km/h.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.20、(1),1;(2)与x轴交于(﹣1,0),与y轴没交点;(3)答案不唯一,如:y=﹣+1.【解析】

(1)根据函数图象的平移规律,可得答案;(2)根据自变量与函数值的对应关系,可得答案;(3)根据点的坐标满足函数解析式,可得答案.【详解】(1)函数的图象可以由我们熟悉的函数的图象向上平移1个单位得到,故答案为:,1;(2)函数的图象与x轴、y轴交点的情况是:与x轴交于(﹣1,0),与y轴没交点,故答案为:与x轴交于(﹣1,0),与y轴没交点;(3)请你构造一个函数,使其图象与x轴的交点为(2,0),且与y轴无交点,这个函数表达式可以是:y=﹣+1,答案不唯一,故答案为:y=﹣+1.【点睛】本题考查了函数图像的平移变换,函数自变量的取值范围,函数图象与坐标轴的交点等知识,利用函数图象的平移规律是解题关键.21、(1)详见解析;(1)详见解析;(3)详见解析.【解析】

(1)根据两角对应相等的两个三角形相似即可判断;

(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,可得S1•S1=ab•BE•CF,由(1)得△BDE∽△CFD,,即BE•FC=BD•CD=ab,即可推出S1•S1=a1b1;

(3)想办法证明△DFE∽△CFD,推出,即DF1=EF•FC;【详解】(1)证明:如图1中,

在△BDE中,∠BDE+∠DEB+∠B=180°,又∠BDE+∠EDF+∠FDC=180°,

∴∠BDE+∠DEB+∠B=∠BDE+∠EDF+∠FDC,

∵∠EDF=∠B,

∴∠DEB=∠FDC,

又∠B=∠C,

∴△BDE∽△CFD.

(1)如图1中,分别过E,F作EG⊥BC于G,FH⊥BC于H,

S1=•BD•EG=•BD•EG=•a•BE•sin60°=•a•BE,S1=•CD•FH=•b•CF,

∴S1•S1=ab•BE•CF

由(1)得△BDE∽△CFD,

∴,即BE•FC=BD•CD=ab,

∴S1•S1=a1b1.(3)由(1)得△BDE∽△CFD,

∴,

又BD=CD,

∴,

又∠EDF=∠C=60°,

∴△DFE∽△CFD,

∴,即DF1=EF•FC.【点睛】本题考查了相似形综合题、等边三角形的性质、相似三角形的判定和性质、三角形的面积等知识,解题的关键是正确寻找相似三角形的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论