版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四章控制系统根轨迹分析法第1页,共43页,2023年,2月20日,星期三4.1根轨迹的概念一.根轨迹法是1948年伊凡思(Evans)提出的,该法是在已知控制系统开环传函的极、零点分布的基础上,研究某一个或某些系统参数的变化对控制系统闭环传函极点分布影响的一种图解法。二.根轨迹是指当系统某个参数(比如开环增益k)由零到无穷大变化时,闭环特征根在[s]平面上移动的轨迹。举例:开环传函:K为开环增益(因为标准型)有两个开环极点无开环零点第2页,共43页,2023年,2月20日,星期三
闭环传函:
则闭环特征方程为:
闭环特征根(即闭环传函的极点):第3页,共43页,2023年,2月20日,星期三4.1根轨迹的概念考虑某一参数变化后,闭环极点的变化规律。通过极点的轨迹了解系统动态性能的变化。利用系统的开环传递函数的零极点分布来研究闭环系统的极点的分布。G(s)H(s)+-闭环传递函数分母方程即特征方程根轨迹方程第4页,共43页,2023年,2月20日,星期三4.1根轨迹的概念3绘制根轨迹的条件:由得幅值条件相角条件为m个开环零点为n个开环极点k——根轨迹增益第5页,共43页,2023年,2月20日,星期三4.1根轨迹的概念模条件与角条件的作用:1、角条件与k无关,即s平面上所有满足角条件的点都属于根轨迹。(所以绘制根轨迹只要依据角条件就足够了)。2、模条件主要用来确定根轨迹上各点对应的根轨迹增益k值。0几何意义:从各开环极点引向根轨迹上的点s的矢量的长度的乘积除以从各开环零点引向根轨迹上的点s的矢量的长度的乘积所得的商即为该s点对应的系数k值.
第6页,共43页,2023年,2月20日,星期三4.1根轨迹的概念例:开环极点为:无开环零点jω
σ0-0.5×
×
-p1-p2第7页,共43页,2023年,2月20日,星期三4.1根轨迹的概念试探法(1)在实轴上取S1=-0.1S1jω
σ0-0.5×
×
-p1-p2S1对应的
同理,实轴上之间的点都是根轨迹上的点。
第8页,共43页,2023年,2月20日,星期三4.1根轨迹的概念(2)在复平面上取S2=-0.25+j0.25S1对应的
同理,实轴垂直平分线上的所有点都是根轨迹上的点。
S2jω
σ0-0.5×
×
-p1-p2•
-0.25第9页,共43页,2023年,2月20日,星期三4.2根轨迹的绘制规则规则一:根轨迹对称于实轴。规则二:根轨迹的分支数,起点,终点。(1)分支数等于闭环特征方程的阶数n:(因为n阶方程应有n个根,当时,n个根都随k变)(2)根轨迹起始于开环极点(n个)(3)根轨迹终止于开环零点(m个)和(n-m)个无穷远处。因为由根轨迹方程:起点,即k=0。只有当时,为无穷大。终点,即,只有当或为0。第10页,共43页,2023年,2月20日,星期三4.2根轨迹的绘制规则规则三:实轴上的根轨迹分析:(1)共轭复零点或极点所产生的相角等值反号。所以不影响相角条件;(2)s点左侧零、极点相角都为0,所以也不影响相角条件。(3)s点右侧零、极点相角为而相角条件即奇数个所以结论:实轴上线段右侧的零、极点数目之和为奇数时,此区段为根轨迹。第11页,共43页,2023年,2月20日,星期三jωσ
×
×
×
×
例第12页,共43页,2023年,2月20日,星期三4.2根轨迹的绘制规则规则四:根轨迹的渐近线:(1)条数:(n-m)条(2)与实轴所成角度当时,认为所有开环零极点引向s的角相同(3)与实轴交点坐标:即[极点坐标之和]-[零点坐标之和]
极点数–零点数第13页,共43页,2023年,2月20日,星期三第14页,共43页,2023年,2月20日,星期三第15页,共43页,2023年,2月20日,星期三规则五
两条或两条以上的根轨迹分支在S平面上某点相遇后立即分开,则称该点为分离点,分离点的坐标d可由以下方程求得:证明:闭环系统的特征方程为:根轨迹在S平面上某点相遇,则意味着上式有重根第16页,共43页,2023年,2月20日,星期三代数方程有重根的条件:D(s)=0,dD(s)/ds=0化简:第17页,共43页,2023年,2月20日,星期三因为:最后得:第18页,共43页,2023年,2月20日,星期三根轨迹的分离点:分离点在两极点之间,会合点在两零点之间。分离点(会合点)是闭环特征方程的重根。闭环特征方程:另一种求分离点和会合点的方法消去k得第19页,共43页,2023年,2月20日,星期三例:求闭环根轨迹的分离点坐标。法一:法二:-1d1.5第20页,共43页,2023年,2月20日,星期三规则六
根轨迹离开复数极点的切线方向与正实轴间的夹角称为出射角;进入复数零点的切线方向与正实轴间的夹角称为入射角。
它们的计算公式为:出射角
=1800+[各零点指向本极点的方向角]-[其他极点指向本极点的方向角]入射角=1800-[其他零点指向本零点的方向角]+[各极点指向本零点的方向角]第21页,共43页,2023年,2月20日,星期三规则七
若根轨迹与虚轴相交,其交点处的值和对应的k可由劳斯判据求得,或将s=j代入特征方程,并令其实部和虚部分别相等求得。根轨迹与虚轴相交,说明系统处于临界稳定状态,可令劳斯阵列第一列中包含k的项为零,求出k。如果根轨迹与正虚轴有一个交点,说明特征方程有一对纯虚根,可利用劳斯阵列中s2项的系数构成辅助方程,解此方程可求得交点处的值。若交点多于一个,可用大于2的偶次幂所在行的系数构成辅助方程,求得根轨迹与虚轴的交点或第22页,共43页,2023年,2月20日,星期三根轨迹与虚轴的交点:由s=j
代入闭环特征方程可得,D(j
)=0,由方程可得交点的值。例根轨迹的分离点:舍去第23页,共43页,2023年,2月20日,星期三4.2根轨迹的绘制与虚轴交点:代入实部,k’=48实部虚部临界放大倍数Routh表:S318S26k’S10S0
k’0K’=48时,S1行全为0辅助方程:6S2+48=0第24页,共43页,2023年,2月20日,星期三4.3根轨迹绘制举例例4.3-1已知控制系统的开环传递函数为要求绘制系统的根轨迹。第25页,共43页,2023年,2月20日,星期三系统的特征方程为5阶,故根轨迹有5支。起始点:p1=0;p2=-5;p3=-6;p4=-1+j;p5=-1-j;终止点:z1=0;(有限零点)有4个无穷远终止点有四条根轨迹趋于无穷远处,故有四条渐近线:夹角:交点:第26页,共43页,2023年,2月20日,星期三实轴上的根轨迹位于0~-3及-5~-6之间根轨迹离开复数极点-1+j的起始角为根轨迹的分离点或:a=[113.56614212345];roots(a)ans=-5.5257-3.3311+1.2040i-3.3311-1.2040i-0.6560+0.4677i-0.6560-0.4677ir:用MATLAB求根:d=-5.53第27页,共43页,2023年,2月20日,星期三6.根轨迹与虚轴交点可利用劳斯判据确定。第28页,共43页,2023年,2月20日,星期三解得:k=35.6由:k=35.6时的值由以下辅助方程确定:代入k=35.6:rlocus([13],[1135482600])用:第29页,共43页,2023年,2月20日,星期三第30页,共43页,2023年,2月20日,星期三4.3根轨迹绘制举例例4.3-2已知控制系统的开环传递函数为要求绘制系统的以T为参变量的根轨迹。解法:A与K等价第31页,共43页,2023年,2月20日,星期三1.系统的闭环特征方程:2.求等效开环传递函数:3.起始点:p12=-1j;终止点:z1=0,z2=0,z3=-24.实轴上的根轨迹位于:-~-25.从复数极点起始的相角为:进入原点的终止相角为:第32页,共43页,2023年,2月20日,星期三第33页,共43页,2023年,2月20日,星期三4.3根轨迹绘制举例例4.3-3已知控制系统的开环传递函数为要求绘制正反馈系统的根轨迹。背景:复杂系统中可能局部回路是正反馈子系统。特征方程变为:或第34页,共43页,2023年,2月20日,星期三幅角条件:幅值条件:开环传函:第35页,共43页,2023年,2月20日,星期三修正规则三
实轴上若某线段右侧的开环零极点个数之和为偶数,则此线段为根轨迹的一部分修正规则六
根轨迹离开复数极点的切线方向与正实轴间的夹角称为起始角,进入复数零点的切线方向与正实轴间的夹角称为终止角,计算公式:第36页,共43页,2023年,2月20日,星期三修正规则四
当有限开环极点数n大于有限开环零点数m时,有n–m条根轨迹沿n–m条渐近线趋于无穷远处,这n–m条渐近线在实轴上相交于一点,交点坐标为:渐近线与实轴的夹角为:分离角为:第37页,共43页,2023年,2月20日,星期三起始点:p12=-1j;p34=-12j;2.实轴上的根轨迹位于:-~+4.从复数极点起始的相角为:5.分离点:3.根轨迹有4条渐近线d=-1解得6.与虚轴交点:k=0,s=0解得第38页,共43页,2023年,2月20日,星期三j0第39页,共43页,2023年,2月20日,星期三4.3根轨迹绘制举例例4.3-4已知非最小相位系统的开环传递函数为要求绘制系统的根轨迹。对于非最小相位系统,需要根据特征方程确定是按负反馈还是正反馈条件绘制根轨迹。例如:第40页,共43页,2023年,2月20日,星期三化成标准形式:根轨迹方程:按正反馈系统条件绘制该系统根轨迹2.实轴上的根轨迹位于:[0~-3],[
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 部门任务分解报告范文
- 《问题乳企股票跌停》课件
- 劳务合同书版
- c语言课件教学课件
- 《生物钾肥拌种》课件
- 养殖场租赁合同下载
- 《中国电力与能源》课件
- 解除劳动合同模板
- 2024版设备采购合同范本with设备规格与付款方式规定2篇
- 2024年度环保项目施工与维护合同
- 《艺术概论》教案-第六章 艺术类型2
- 国开《Windows网络操作系统管理》形考任务6-配置Web服务实训
- JCT947-2014 先张法预应力混凝土管桩用端板
- 剪刀式车升降机施工方案
- 中班语言《小蚂蚁和蒲公英》
- 口腔诊所患者投诉制度范本
- 《管道支架安装》
- 3.4《测量降水量 》教学设计
- 医学伦理学试题+参考答案
- 2023年江西省普通高考《通用技术》真题试卷(后附答案)
- 教师资格面试-75篇结构化逐字稿
评论
0/150
提交评论