云浮市重点中学2022-2023学年数学高二第二学期期末学业质量监测试题含解析_第1页
云浮市重点中学2022-2023学年数学高二第二学期期末学业质量监测试题含解析_第2页
云浮市重点中学2022-2023学年数学高二第二学期期末学业质量监测试题含解析_第3页
云浮市重点中学2022-2023学年数学高二第二学期期末学业质量监测试题含解析_第4页
云浮市重点中学2022-2023学年数学高二第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的极小值点是()A.1 B.(1,﹣) C. D.(﹣3,8)2.64个直径都为的球,记它们的体积之和为,表面积之和为;一个直径为a的球,记其体积为,表面积为,则()A.>且> B.<且<C.=且> D.=且=3.已知集合,则()A. B. C. D.4.直线被椭圆截得的弦长是()A. B. C. D.5.将函数的图象向左平移个单位,得到函数的图象,若在上为增函数,则的最大值为()A.2 B.4 C.6 D.86.已知抛物线的焦点为,准线为,是上一点,是直线与的一个交点,若,则()A.8 B.4 C.6 D.37.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.8.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个9.从5名男同学,3名女同学中任选4名参加体能测试,则选到的4名同学中既有男同学又有女同学的概率为()A. B. C. D.10.若函数fx=3sinπ-ωx+sin5π2+ωx,且fA.2kπ-2π3C.kπ-5π1211.已知抛物线的焦点为,过的直线交抛物线于两点(在轴上方),延长交抛物线的准线于点,若,,则抛物线的方程为()A. B. C. D.12.复数(为虚数单位)等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的零点个数为__________.14.已知点分别是双曲线:的左右两焦点,过点的直线与双曲线的左右两支分别交于两点,若是以为顶角的等腰三角形,其中,则双曲线离心率的取值范围为______.15.若复数满足,则的取值范围是________16.已知全集,集合,,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的前项和为,,().(1)求数列的通项公式;(2)设(),数列的前项和为,证明:().18.(12分)设函数(k为常数,e=1.71818…是自然对数的底数).(1)当时,求函数f(x)的单调区间;(1)若函数在(0,1)内存在两个极值点,求k的取值范围.19.(12分)设函数.(1)若为定义域上的单调函数,求实数的取值范围;(2)若,当时,证明:.20.(12分)已知是抛物线的焦点,点是抛物线上一点,且.(1)求,的值;(2)过点作两条互相垂直的直线,与抛物线的另一交点分别是,.①若直线的斜率为,求的方程;②若的面积为12,求的斜率.21.(12分)已知数列的前项的和,满足,且.(1)求数列的通项公式;(2)若数列满足:,求数列的前项的和.22.(10分)已知,是双曲线:(、为常数,)上的两个不同点,是坐标原点,且,(1)若是等腰三角形,且它的重心是双曲线的右顶点,求双曲线的渐近线方程;(2)求面积的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求得原函数的导数,令导数等于零,解出的值,并根据单调区间判断出函数在何处取得极小值,并求得极值,由此得出正确选项.【详解】,由得函数在上为增函数,上为减函数,上为增函数,故在处有极小值,极小值点为1.选A【点睛】本小题主要考查利用导数求函数的极值点,属于基础题.2、C【解析】

分别计算出、、、,再比较大小。【详解】,,故=,>【点睛】已知直径利用公式,分别计算出、、、,再比较大小即可。3、D【解析】

计算出A集合,则可以比较简单的判断四个选项的正误.【详解】可以排除且故选择D.【点睛】考查集合的包含关系,属于简单题.4、A【解析】

直线y=x+1代入,得出关于x的二次方程,求出交点坐标,即可求出弦长.【详解】将直线y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直线y=x+1被椭圆x2+4y2=8截得的弦长为故选A.【点睛】本题查直线与椭圆的位置关系,考查弦长的计算,属于基础题.5、C【解析】,向左平移个单位,得到函数的图象,所以,因为,所以即的最大值为6,选C.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母而言.由求增区间;由求减区间.6、D【解析】

设点、,由,可计算出点的横坐标的值,再利用抛物线的定义可求出.【详解】设点、,易知点,,,,解得,因此,,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.7、C【解析】

试题分析:抛物线焦点为,准线方程为,由得或所以,故答案为C.考点:1、抛物线的定义;2、直线与抛物线的位置关系.8、C【解析】

通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。9、D【解析】

由题可知为古典概型,总的可能结果有种,满足条件的方案有三类:一是一男三女,一是两男两女,另一类是三男一女;每类中都用分步计数原理计算,再将三类组数相加,即可求得满足条件的结果,代入古典概型概率计算公式即可得到概率.【详解】根据题意,选4名同学总的可能结果有种.选到的4名同学中既有男同学又有女同学方案有三类:(1)一男三女,有种,(2)两男两女,有种.(3)三男一女,有种.共种结果.由古典概型概率计算公式,.故选D.【点睛】本题考查古典概型与排列组合的综合问题,利用排列组合的公式计算满足条件的种类是解决本题的关键.10、A【解析】

本题首先要对三角函数进行化简,再通过α-β的最小值是π2推出函数的最小正周期,然后得出ω【详解】fx==3sin=2sin再由fα=2,fβ=0,α-β的最小值是fx=2sinx+x∈2kπ-2π3【点睛】本题需要对三角函数公式的运用十分熟练并且能够通过函数图像的特征来求出周期以及增区间.11、C【解析】分析:先求得直线直线AB的倾斜角为,再联立直线AB的方程和抛物线的方程求出点A,B的坐标,再求出点C的坐标,得到AC||x轴,得到,即得P的值和抛物线的方程.详解:设=3a,设直线AB的倾斜角为,所以直线的斜率为.所以直线AB的方程为.联立所以,所以直线OB方程为,令x=-所以故答案为:C.点睛:(1)本题主要考查抛物线的几何性质,考查直线和抛物线的位置关系和抛物线方程的求法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答圆锥曲线题目时,看到曲线上的点到焦点的距离(焦半径),要马上联想到利用圆锥曲线的定义解答.12、B【解析】

由复数的乘法运算法则求解.【详解】故选.【点睛】本题考查复数的乘法运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】

根据图像与函数的单调性分析即可.【详解】的零点个数即的根的个数,即与的交点个数.又当时,,此时在上方.当时,,,此时在下方.又对求导有,对求导有,故随的增大必有,即的斜率大于的斜率.故在时,与还会有一个交点.分别作出图像可知有两个交点.故答案为:2【点睛】本题主要考查了数形结合求解函数零点个数的问题,需要根据题意分析函数斜率的变化规律与图像性质.属于中档题.14、【解析】分析:根据双曲线的定义,可求得,设,由余弦定理可得,,进而可得结果.详解:如图,,又,则有,不妨假设,则有,可得,中余弦定理,,,即,故答案为.点睛:本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求离心率范围问题应先将用有关的一些量表示出来,再利用其中的一些关系构造出关于的不等式,从而求出的范围.本题是利用点到直线的距离等于圆半径构造出关于的等式,最后解出的值.15、【解析】分析:由复数的几何意义解得点的轨迹为以为端点的线段,表示线段上的点到的距离,根据数形结合思想,结合点到直线距离公式可得结果.详解:因为复数满足,在复平面内设复数对应的点为,则到的距离之和为,所以点的轨迹为以为端点的线段,表示线段上的点到的距离,可得最小距离是与的距离,等于;最大距离是与的距离,等于;即的取值范围是,故答案为.点睛:本题考查复数的模,复数的几何意义,是基础题.复数的模的几何意义是复平面内两点间的距离,所以若,则表示点与点的距离,表示以为圆心,以为半径的圆.16、【解析】

利用集合补集和交集的定义直接求解即可.【详解】因为全集,集合,,所以.故答案为:【点睛】本题考查了集合的补集、交集的定义,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析.【解析】试题分析:(1)由数列递推式结合,可得(),然后利用累积法求得数列通项公式;(2)把数列的通项公式代入(),然后利用裂项相消法求和,放缩得答案试题解析:(1)当时,,解得;当时,,,以上两式相减,得,∴,∴,∴(2)当时,;当时,,∴,∴().点睛:本题主要考查了这一常用等式,需注意的范围,累乘法求通项公式以及数列求和,属于高考中常考知识点,难度不大;常见的数列求和的方法有公式法即等差等比数列求和公式,分组求和类似于,其中和分别为特殊数列,裂项相消法类似于,错位相减法类似于,其中为等差数列,为等比数列等.18、(1)单调递减区间为,单调递增区间为;(1).【解析】

试题分析:(I)函数的定义域为,由可得,得到的单调递减区间为,单调递增区间为.(II)分,,,时,讨论导函数值的正负,根据函数的单调性,明确极值点的有无、多少.试题解析:(I)函数的定义域为,由可得,所以当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间为,单调递增区间为.(II)由(I)知,时,函数在内单调递减,故在内不存在极值点;当时,设函数,因为,当时,当时,,单调递增,故在内不存在两个极值点;当时,得时,,函数单调递减,时,,函数单调递增,所以函数的最小值为,函数在内存在两个极值点;当且仅当,解得,综上所述,函数在内存在两个极值点时,k的取值范围为.考点:应用导数研究函数的单调性、极值,分类讨论思想,不等式组的解法.19、(1);(2)见解析【解析】

(1)求得的导数,,得到方程的判别式,分和、三种讨论,求得函数的单调性,即可求解;(2)由,当时,只需,故只需证明当时,,求得函数的单调性与最值,即可求解.【详解】(1)由题意,函数的定义域为,则,方程的判别式.(ⅰ)若,即,在的定义域内,故单调递增.(ⅱ)若,则或.若,则,.当时,,当时,,所以单调递增.若,单调递增.(ⅲ)若,即或,则有两个不同的实根,当时,,从而在的定义域内没有零点,故单调递增.当时,,在的定义域内有两个不同的零点,即在定义域上不单调.综上:实数的取值范围为.(2)因为,当,时,,故只需证明当时,.当时,函数在上单调递增,又,故在上有唯一实根,且,当时,,当时,,从而当时,)取得最小值.由得,即,故,所以.综上,当时,.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1),(2)①②或【解析】

(1)直接利用抛物线方程,结合定义求p的值;然后求解t;

(2)①直线AB的斜率为,设出方程,A、B坐标,与抛物线联立,然后求AB的方程;

②求出三角形的面积的表达式,结合△ABC的面积为12,求出m,然后求AB的斜率.【详解】解:(1)由抛物线定义得,,(2)设方程为,,与抛物线方程联立得由韦达定理得:,即类似可得①直线的斜率为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论