山东省青岛第十六中学2022-2023学年高二数学第二学期期末复习检测模拟试题含解析_第1页
山东省青岛第十六中学2022-2023学年高二数学第二学期期末复习检测模拟试题含解析_第2页
山东省青岛第十六中学2022-2023学年高二数学第二学期期末复习检测模拟试题含解析_第3页
山东省青岛第十六中学2022-2023学年高二数学第二学期期末复习检测模拟试题含解析_第4页
山东省青岛第十六中学2022-2023学年高二数学第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙、丁四名同学报名参加假期社区服务活动,社区服务活动共有关怀老人、环境监测、教育咨询、交通宣传等四个项目,每人限报其中一项,记事件A为4名同学所报项目各不相同”,事件B为“只有甲同学一人报关怀老人项目”,则P(B|A)=()A.14 B.34 C.22.由命题“周长为定值的长方形中,正方形的面积取得最大”可猜想:在表面积为定值的长方体中()A.正方体的体积取得最大B.正方体的体积取得最小C.正方体的各棱长之和取得最大D.正方体的各棱长之和取得最小3.有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种 B.48种C.96种 D.144种4.设全集U=R,集合,,则集合()A. B.C. D.5.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格不及格合计很少使用手机20525经常使用手机101525合计302050则有()的把握认为经常使用手机对数学学习成绩有影响.参考公式:,其中0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828A.97.5% B.99% C.99.5% D.99.9%6.已知定圆,,定点,动圆满足与外切且与内切,则的最大值为()A. B. C. D.7.已知数列的前项和为,,则“”是“数列是等比数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知复数满足,则复数在复平面内对应的点为()A. B. C. D.9.若随机变量服从正态分布,且,()A. B. C. D.10.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取60名高中生做问卷调查,得到以下数据:作文成绩优秀作文成绩一般总计课外阅读量较大221032课外阅读量一般82028总计303060由以上数据,计算得到的观测值,根据临界值表,以下说法正确的是()P(K2≥k0)0.500.400.250.150.100.050.050.0100.005k00.4550.7081.3232.0722.7063.8415.0246.6357.879A.在样本数据中没有发现足够证据支持结论“作文成绩优秀与课外阅读量大有关”B.在犯错误的概率不超过0.001的前提下,认为作文成绩优秀与课外阅读量大有关C.在犯错误的概率不超过0.05的前提下,认为作文成绩优秀与课外阅读量大有关D.在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关11.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B.C. D.12.己知,是椭圆的左右两个焦点,若P是椭圆上一点且,则在中()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,若,则__________.14.设为虚数单位,若,则________.15.函数的值域为_______.16.的展开式中,若的奇数次幂的项的系数之和为32,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知定义在R上的函数f(x)=|x﹣m|+|x|,m∈N*,存在实数x使f(x)<2成立.(1)求实数m的值;(2)若α≥1,β≥1,f(α)+f(β)=4,求证:≥1.18.(12分)已知椭圆的长轴长为4,离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)当时,设,过作直线交椭圆于、两点,记椭圆的左顶点为,直线,的斜率分别为,,且,求实数的值.19.(12分)唐代饼茶的制作一直延续至今,它的制作由“炙”、“碾”、“罗”三道工序组成:根据分析甲、乙、丙三位学徒通过“炙”这道工序的概率分别是,,;能通过“碾”这道工序的概率分别是,,;由于他们平时学徒刻苦,都能通过“罗”这道工序;若这三道工序之间通过与否没有影响,(Ⅰ)求甲、乙、丙三位同学中恰好有一人通过“炙”这道工序的概率,(Ⅱ)设只要通过三道工序就可以制成饼茶,求甲、乙、丙三位同学中制成饼茶人数的分布列.20.(12分)已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆的方程:(2)若是椭圆上的动点,求的取值范围;(3)直线:与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.21.(12分)设数列的前项的和为,且满足,对,都有(其中常数),数列满足.(1)求证:数列是等比数列;(2)若,求的值;(3)若,使得,记,求数列的前项的和.22.(10分)已知椭圆:的上顶点为,右顶点为,直线与圆相切于点.(Ⅰ)求椭圆的标准方程;(Ⅱ)设椭圆的左、右焦点分别为、,过且斜率存在的直线与椭圆相交于,两点,且,求直线的方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

确定事件AB,利用古典概型的概率公式计算出PAB和PA,再利用条件概型的概率公式可计算出P【详解】事件AB为“4名同学所报项目各不相同且只有甲同学一人报关怀老人项目”,则PAB=A334【点睛】本题考查条件概型概率的计算,考查条件概率公式的理解和应用,考查运算能力,属于中等题。2、A【解析】

根据类比规律进行判定选择【详解】根据平面几何与立体几何对应类比关系:周长类比表面积,长方形类比长方体,正方形类比正方体,面积类比体积,因此命题“周长为定值的长方形中,正方形的面积取得最大”,类比猜想得:在表面积为定值的长方体中,正方体的体积取得最大,故选A.【点睛】本题考查平面几何与立体几何对应类比,考查基本分析判断能力,属基础题.3、C【解析】试题分析:,故选C.考点:排列组合.4、A【解析】

求出,然后求解即可.【详解】全集,集合,则集合,所以,故选A.【点睛】该题考查的是有关集合的运算,属于简单题目.5、C【解析】

根据2×2列联表,求出的观测值,结合题中表格数据即可得出结论.【详解】由题意,可得:,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响.故选C.【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.6、A【解析】

将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【详解】定圆,,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为:故答案选A【点睛】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.7、C【解析】

先令,求出,再由时,根据,求出,结合充分条件与必要条件的概念,即可得出结果.【详解】解:当时,,当时,时,,,数列是等比数列;当数列是等比数列时,,,,所以,是充分必要条件。故选C【点睛】本题主要考查充分必要条件的判定,熟记概念,以及数列的递推公式即可求解,属于常考题型.8、A【解析】

利用复数除法运算,化简为的形式,由此求得对应的点的坐标.【详解】依题意,对应的点为,故选A.【点睛】本小题主要考查复数的除法运算,考查复数对应点的坐标,属于基础题.9、B【解析】设,则,根据对称性,,则,即,故故选:B.10、D【解析】分析:根据临界值表,确定犯错误的概率详解:因为根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为作文成绩优秀与课外阅读量大有关.选D.点睛:本题考查卡方含义,考查基本求解能力.11、A【解析】

利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.12、A【解析】

根据椭圆方程求出、,即可求出、,再根据余弦定理计算可得;【详解】解:因为,所以,,又因为,,所以,在中,由余弦定理,即,,故选:【点睛】本题考查椭圆的简单几何性质及余弦定理解三角形,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先根据向量的平行求出x的值,再根据向量的数量积计算即可.【详解】解:∵,因为,所以,解得:,所以.【点睛】本题考查了向量的平行和向量的数量积,属于基础题.14、【解析】由,得,则,故答案为.15、【解析】

利用导数求出函数的单调性,由单调性即可得出值域.【详解】当,当所以函数在区间上单调递增,在区间上单调递减则即函数的值域为故答案为:【点睛】本题主要考查了利用导数求函数的值域,属于基础题.16、【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)m=1;(2)见证明【解析】

(1)要使不等式有解,则,再由,能求出实数的值;(2)先求出,从而,由此利用基本不等式,即可作出证明.【详解】(1)因为|x-m|+|x|≥|(x-m)-x|=|m|,所以要使不等式|x-m|+|x|<2有解,则|m|<2,解得-2<m<2.因为m∈N*,所以m=1.(2)证明:因为α≥1,β≥1,所以f(α)+f(β)=2α-1+2β-1=4,即α+β=1,所以当且仅当,即α=2,β=1时等号成立,故≥1.【点睛】本题主要考查了绝对值三角不等式的应用,以及不等式的证明,其中解答中认真审题,主要基本不等式的性质的合理运用,着重考查了推理与论证能力,属于中档试题.18、(Ⅰ)或;(Ⅱ)1.【解析】

(Ⅰ)根据椭圆的焦点位置的不同进行分类讨论,利用长轴长和离心率可以求出椭圆的标准方程;(Ⅱ)由,可以确定椭圆的标准方程,过作直线可以分为二类,一类是没有斜率,一类有斜率,分别讨论,直线没有斜率时,可直接求出两点坐标,利用,可以求出点坐标,当存在斜率时,直线方程与椭圆方程联立,利用根与系数关系,结合等式,也可以求出点坐标,也就求出实数的值.【详解】(I)当时,由得,;当时,由得,.所以椭圆C的方程为或.(Ⅱ)当直线l的斜率不存在时,l的方程为,则由得两点.所以,即得(舍去)或.直线l的斜率存在时,l的方程设为设,,联立,消去y得(*),所以,,而,,化简得,即,显然,所以,解得或(舍去),对时,方程(*)的,所以,故综上得所求实数.【点睛】本题考查了椭圆的标准方程,直线与椭圆的位置关系,利用根与系数关系,结合已知等式是解题的关键,本题易忽略直线不存在斜率这种情况.19、(Ⅰ)0.35;(Ⅱ)详见解析.【解析】

(Ⅰ)甲、乙、丙中恰好有一人通过,可分为:甲过,乙、丙不过;乙过,甲、丙不过;丙过,乙、甲不过。(Ⅱ)先求出甲、乙、丙制成饼茶的概率,,.随机变量的可能取值为,,,,分别求出其概率,写出分布列即可。【详解】解:(I)设,,分别表示事件“甲、乙、丙通过“炙”这道工序”,则所求概率(II)甲制成饼茶的概率为,同理,.随机变量的可能取值为,,,,故的分布列为【点睛】本题主要考查简单随机变量的分布列,属于基础题。20、(1);(2);(3)是定值,为0.【解析】

(1)由题意可知:,解这个方程组即可;(2)把椭圆的方程化为参数方程,根据辅助角公式可以求出的取值范围;(3)直线方程与椭圆的标准方程联立,利用根与系数关系,可以判断出为定值.【详解】(1)因为以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.所以有,解得,所以椭圆的方程为:(2)椭圆椭圆的参数方程为:(为参数且).因为是椭圆上的动点,所以,其中..(3)设,则,.直线:与椭圆的方程联立为:消去得,由根与系数关系可得:直线的方程为:,令,因为,所以.。.【点睛】本题考查了求椭圆的标准方程,考查了椭圆参数方程的应用,考查了直线与椭圆的位置关系,考查了数学运算能力.21、(1)见解析;(2).【解析】分析:(1)因为两式相减,时所以数列是等比

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论