版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某研究机构在对具有线性相关的两个变量和进行统计分析时,得到的数据如下表所示.由表中数据求得关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线上方的概率为()4681012122.956.1A. B. C. D.无法确定2.设,,,则下列正确的是A. B. C. D.3.设复数z满足=i,则|z|=()A.1 B. C. D.24.一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是A. B. C. D.5.考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()A. B. C. D.6.复数z满足z=2i1-iA.1-i B.1+2i C.1+i D.-1-i7.已知向量||=,且,则()A. B. C. D.8.若二项展开式中的系数只有第6项最小,则展开式的常数项的值为()A.-252 B.-210 C.210 D.109.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.丁可以知道四人的成绩10.已知,,是不全相等的正数,则下列命题正确的个数为()①;②与及中至少有一个成立;③,,不能同时成立.A. B. C. D.11.以下四个命题中,真命题有().A.是周期函数,:空集是集合的子集,则为假命题B.“,”的否定是“,”C.“”是“”的必要不充分条件D.已知命题:“如果,那么或”,在命题的逆命题,否命题,逆否命题三个命题中,真命题的个数有个.12.已知是定义在上的奇函数,且满足,当时,,则在上,的解集是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的所有顶点都在球的表面上,平面,,,,,则球的表面积为__________.14.若展开式中的第7项是常数项,则n的值为______.15.函数的极值点为__________.16.试写出的展开式中系数最大的项_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求的极值点;(2)求方程的根的个数.18.(12分)设,已知.(1)求的值(2)设,其中,求的值.19.(12分)已知关于的不等式的解集为(1)求实数的值;(2)求的最大值.20.(12分)已知极坐标系的极点在直角坐标系的原点处,极轴与轴正半轴重合,直线的参数方程为:(为参数,),曲线的极坐标方程为:.(1)写出曲线的直角坐标方程;(2)设直线与曲线相交于两点,直线过定点,若,求直线的斜率.21.(12分)已知函数,(其中,为自然对数的底数).(1)讨论函数的单调性;(2)若分别是的极大值点和极小值点,且,求证:.22.(10分)设{an}是等差数列,a1=–10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)记{an}的前n项和为Sn,求Sn的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
求出样本的中心点,计算出,从而求出回归直线方程,个点中落在回归直线上方的有三个,算出概率即可。【详解】由题可得,因为线性回归方程过样本中心点,所以,所以,所以,故个点中落在回归直线上方有,,,共个,所以概率为.故选B.【点睛】本题考查线性回归方程和古典概型,解题的关键是求出线性回归方程,属于一般题。2、B【解析】
根据得单调性可得;构造函数,通过导数可确定函数的单调性,根据单调性可得,得到,进而得到结论.【详解】由的单调递增可知:,即令,则令,则当时,;当时,即:在上单调递增,在上单调递减,即,即:综上所述:本题正确选项:【点睛】本题考查根据函数单调性比较大小的问题,难点在于比较指数与对数大小时,需要构造函数,利用导数确定函数的单调性;需要注意的是,在得到导函数的零点后,需验证零点与之间的大小关系,从而确定所属的单调区间.3、A【解析】试题分析:由题意得,,所以,故选A.考点:复数的运算与复数的模.4、B【解析】
∵随机抛正方体,有6种等可能的结果,其中正方体落地时“向上面为红色”有2种情况,
∴正方体落地时“向上面为红色”的概率是
.故选B.5、D【解析】
先求出基本事件总数,再列举出所得的两条直线相互平行但不重合的个数,利用古典概型公式即可得解.【详解】甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有共12对,所以所求概率为,选D.【点睛】本题主要考查了古典概型的计算,涉及空间直线平行的判断,属于中档题.6、D【解析】
直接利用复数代数形式的乘除运算化简得答案.【详解】z=2i1-i=2i(1+i)【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.7、C【解析】
由平面向量模的运算可得:0,得,求解即可.【详解】因为向量||,所以0,又,所以2,故选C.【点睛】本题考查了平面向量模的运算,熟记运算性质是关键,属基础题.8、C【解析】,,令,所以常数项为,故选C.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.9、A【解析】
根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.10、C【解析】
①假设等式成立,由其推出a、b、c的关系,判断与题干是否相符;②假设其全部不成立,由此判断是否存在符合条件的数;③举例即可说明其是否能够同时成立.【详解】对①,假设(a-b)2+(b-c)2+(c-a)2=0⇒a=b=c与已知a、b、c是不全相等的正数矛盾,∴①正确;
对②,假设都不成立,这样的数a、b不存在,∴②正确;
对③,举例a=1,b=2,c=3,a≠c,b≠c,a≠b能同时成立,∴③不正确.
故选C.【点睛】本题考查命题真假的判断,利用反证法、分析法等方式即可证明,有时运用举例说明的方式更快捷.11、C【解析】选项中,由题意得为真,为真,则为真,故不正确.选项中,命题的否定应是“,”,故不正确.选项中,由“”不能得到“”成立;由“”一定能得到“”成立。故“”是“”的必要不充分条件.故C正确。选项中,命题的逆命题、否命题、逆否命题都为真,所以有个真命题,故不正确.综上选.12、C【解析】
首先结合函数的对称性和函数的奇偶性绘制函数图像,原问题等价于求解函数位于直线下方点的横坐标,数形结合确定不等式的解集即可.【详解】函数满足,则函数关于直线对称,结合函数为奇函数绘制函数的图像如图所示:的解集即函数位于直线下方点的横坐标,当时,由可得,结合可得函数与函数交点的横坐标为,据此可得:的解集是.本题选择C选项.【点睛】本题主要考查函数的奇偶性,函数的对称性等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据三棱锥的结构特征,求得三棱锥外接球半径,由球表面积公式即可求得表面积。详解:由,根据同角三角函数关系式得,解得所以,因为,,由余弦定理代入得所以△ABC为等腰三角形,且,由正弦定理得△ABC外接圆半径R为,解得设△ABC外心为,,过作则在中在中解得所以外接球面积为点睛:本题综合考查了空间几何体外接球半径的求法,通过建立空间模型,利用勾股定理求得半径;结合球的表面积求值,对空间想象能力要求高,综合性强,属于难题。14、【解析】
利用二项展开式得出第七项x的指数,利用指数为零,求出的值.【详解】解:的展开式的第七项为,由于第七项为常数项,则,解得,故答案为:1.【点睛】本题考查二项式定理,考查对公式的理解与应用,属于基础题.15、【解析】
求出的导数,令,根据单调区间,可得所求极值点;【详解】令,得则函数在上单调递减,在上单调递增,则函数在处取得极小值,是其极小值点.即答案为3.【点睛】本题考查导数的运用:求单调区间和极值点,考查化简整理的运算能力,属于基础题.16、【解析】
Tr+1=(﹣1)rx7﹣2r,r必须为偶数,分别令r=0,2,4,6,经过比较即可得出【详解】,r必须为偶数,分别令r=0,2,4,6,其系数分别为:1,,,经过比较可得:r=4时满足条件,故答案为:.【点睛】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)时,仅有一个极小值;(2)当时,原方程有2个根;当时,原方程有3个根;当时,原方程有4个根【解析】
(1)求导得到,计算函数的单调区间得到极值.(2)令,求导得到在,上时,单调递减,为偶函数,根据零点存在定理得到答案.【详解】(1)的定义域为,由,得,在内为减函数,在内为增函数,故仅有一个极小值.(2)令,.当时,,当时,.因此在,上时,单调递减,在,上时,单调递增.又为偶函数,当时,的极小值为.当时,,当时,,当时,,当时,.由根的存在性定理知,方程在和一定有根,故的根的情况为:当时,即时,原方程有2个根;当时,即时,原方程有3个根.当时,即时,原方程有4个根.【点睛】本题考查了函数的极值问题,零点问题,意在考查学生的计算能力和应用能力.18、(1);(2);【解析】
(1)根据二项式展开式的二项式系数,求得的表达式,代入解方程,求得的值.(2)利用二项式展开式化简,由此求得的值.【详解】解:(1)因为,所以因为所以解得(2)由(1)知.即所以因为,所以【点睛】本小题主要考查二项式展开式,考查方程的思想,考查运算求解能力,属于中档题.19、(1);(2)4【解析】
(1)先由可得,再利用关于的不等式的解集为可得,的值;(2)先将变形为,再利用柯西不等式可得的最大值.【详解】(1)由,得则解得,(2)当且仅当,即时等号成立,故.20、(1);(2).【解析】
(1)由,得,由此能求出曲线C的直角坐标方程;(2)把代入,整理得,由,得,能求出直线l的斜率.【详解】(1)曲线C的极坐标方程为,所以.即,即.(2)把直线的参数方程带入得设此方程两根为,易知,而定点M在圆C外,所以,,,,可得,∴,所以直线的斜率为-1.【点睛】本题考查曲线的直角坐标方程的求法,考查直线的斜率的求法,考查极坐标方程、直角坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.21、(1)见解析;(2)证明见解析【解析】
(1)讨论,和三种情况,分别计算得到答案.(2)根据题意知等价于,设,计算得到使,计算得到得到证明.【详解】(1)当时,,的单调递增区间是,单调递减区间是;时,,①时,由解得或;由解得,的单调递增区间是和,单调递减区间是②时,由解得;由解得或,的单调递增区间是,单调递减区间是和;综上所述:时,单调递增区间是,单调递减区间是;时,单调递增区间是和,单调递减区间是;时,单调递增区间是,单调递减区间是和;(2)由已知和(1)得,当时满足题意,此时,,令,则.令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024工厂租赁的协议书
- 2024年度分公司质量保障与售后服务协议3篇
- 2024年度农作物健康保护合作合同版B版
- 2024年专业咨询公司销售服务协议样本版B版
- 2024年度园林绿化工程车辆租赁合同3篇
- 2024年企业数字化转型升级合同
- 2024年制造业打磨工固定期限协议版B版
- 2024商用浴室改造项目承包协议
- 2024年工程领域劳务分包协议样本版B版
- 2024年度围墙施工及材料供应合同
- 电梯竣工资料移交清单
- AC10C沥青混合料配合比设计
- 初中英语定语从句专项训练
- 井眼净化技术
- 基于PLC自动门控制系统设计论文
- 工伤认定申请承诺书
- 桥梁工程—梁-拱组合结构桥梁施工工艺
- 2020浙江卫视《青春环游记》招商方案-32P
- 单区长杨凌现代农业研学旅行推介词定稿426
- 葡甘露聚糖项目简介(范文参考)
- 事故调查笔录模板(共5页)
评论
0/150
提交评论