2023届浙江省丽水学院附属高级中学数学高二下期末学业质量监测模拟试题含解析_第1页
2023届浙江省丽水学院附属高级中学数学高二下期末学业质量监测模拟试题含解析_第2页
2023届浙江省丽水学院附属高级中学数学高二下期末学业质量监测模拟试题含解析_第3页
2023届浙江省丽水学院附属高级中学数学高二下期末学业质量监测模拟试题含解析_第4页
2023届浙江省丽水学院附属高级中学数学高二下期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若满足约束条件,则的最大值为()A.9 B.5 C.11 D.32.在平面直角坐标系中,已知抛物线的焦点为,过点的直线与抛物线交于,两点,若,则的面积为()A. B. C. D.3.在建立两个变量与的回归模型时,分别选择了4个不同的模型,这四个模型的相关系数分别为0.25、0.50、0.98、0.80,则其中拟合效果最好的模型是()A.模型1 B.模型2 C.模型3 D.模型44.参数方程为参数表示什么曲线A.一个圆 B.一个半圆 C.一条射线 D.一条直线5.有一个偶数组成的数阵排列如下:248142232…610162434……12182636………202838…………3040……………42…………………则第20行第4列的数为()A.546 B.540 C.592 D.5986.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油7.函数在的图像大致为A. B. C. D.8.若a=72-12,b=27A.a<b<c B.a<c<b C.c<b<a D.c<a<b9.在中,角A,B,C所对的边分别是a,b,c,若角A,C,B成等差数列,且,则的形状为()A.直角三角形 B.等腰非等边三角形C.等边三角形 D.钝角三角形10.观察下面频率等高条形图,其中两个分类变量x,y之间关系最强的是()A. B.C. D.11.若函数的定义域为,则的取值范围为()A. B. C. D.12.设A、B是非空集合,定义:且.已知,,则等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用反证法证明命题“如果,那么”时,假设的内容应为_____.14.复数(为虚数单位),则________.15.在中,角所对的边分别为,已知,且的面积为,则的周长为______.16.若C9x=三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)求的值;(2)求的最小正周期;(3)求的最大值及取得最大值的x的集合.18.(12分)如图,在四棱锥中,平面,,∥,,.为的中点,点在上,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值.19.(12分)如图,已知,分别为椭圆:的上、下焦点,是抛物线:的焦点,点是与在第二象限的交点,且.(1)求椭圆的方程;(2)与圆相切的直线:(其中)交椭圆于点,,若椭圆上一点满足,求实数的取值范围.20.(12分)如图,在空间几何体中,四边形是边长为2的正方形,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.21.(12分)命题方程表示双曲线;命题不等式的解集是.为假,为真,求的取值范围.22.(10分)某理科考生参加自主招生面试,从道题中(道甲组题和道乙组题)不放回地依次任取道作答.(1)求该考生在第一次抽到甲组题的条件下,第二次和第三次均抽到乙组题的概率;(2)规定理科考生需作答道甲组题和道乙组题,该考生答对甲组题的概率均为,答对乙组题的概率均为,若每题答对得,否则得零分.现该生已抽到道题(道甲组题和道乙组题),求其所得总分的分布列与数学期望.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

先作出不等式组所表示的可行域,然后平移直线,观察直线在轴上的截距取最大值时对应的最优解,将最优解代入函数即可得出答案。【详解】作出不等式组所表示的可行域如下图所示:联立,得,点的坐标为,平移直线,当该直线经过点,它在轴上的截距取最大值,此时,取最大值,即,故选:A.【点睛】本题考查线性规划问题,考查线性目标函数的最值问题,解题思路就是作出可行域,平移直线观察在坐标轴上的截距变化寻找最优解,是常考题型,属于中等题。2、C【解析】

设直线的方程为,联立,可得,利用韦达定理结合(),求得,的值,利用可得结果.【详解】因为抛物线的焦点为所以,设直线的方程为,将代入,可得,设,,则,,因为,所以,所以,,所以,即,所以,所以的面积,故选C.【点睛】本题主要考查抛物线的方程与几何性质以及直线与抛物线的位置关系,属于中档题.解答有关直线与抛物线位置关系问题,常规思路是先把直线方程与-抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.3、C【解析】

相关系数的绝对值越靠近1,拟合效果越好,据此得到答案.【详解】四个模型的相关系数分别为0.25、0.50、0.98、0.80相关系数的绝对值越靠近1,拟合效果越好故答案选C【点睛】本题考查了相关系数,相关系数的绝对值越靠近1,拟合效果越好.4、C【解析】分析:消去参数t,把参数方程化为普通方程,即得该曲线表示的是什么图形.详解:参数方程为参数,消去参数t,把参数方程化为普通方程,,即,它表示端点为的一条射线.故选:C.点睛:本题考查了参数方程的应用问题,解题时应把参数方程化为普通方程,并且需要注意参数的取值范围,是基础题.5、A【解析】分析:观察数字的分布情况,可知从右上角到左下角的一列数成公差为2的等差数列,想求第20行第4列的数,只需求得23行第一个数再减去即可,进而归纳每一行第一个数的规律即可得出结论.详解:顺着图中直线的方向,从上到下依次成公差为2的等差数列,要想求第20行第4列的数,只需求得23行第一个数再减去即可.观察可知第1行的第1个数为:;第2行第1个数为:;第3行第1个数为:.……第23行第1个数为:.所以第20行第4列的数为.故选A.点睛:此题考查归纳推理,解题的关键是通过观察得出数字的排列规律,是中档题.6、D【解析】

解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,故A错误;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B错误;对于C,由图象可知当速度为80km/h时,甲车的燃油效率为10km/L,即甲车行驶10km时,耗油1升,故行驶1小时,路程为80km,燃油为8升,故C错误;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D正确故选D.考点:1、数学建模能力;2、阅读能力及化归思想.7、B【解析】

由分子、分母的奇偶性,易于确定函数为奇函数,由的近似值即可得出结果.【详解】设,则,所以是奇函数,图象关于原点成中心对称,排除选项C.又排除选项D;,排除选项A,故选B.【点睛】本题通过判断函数的奇偶性,缩小考察范围,通过计算特殊函数值,最后做出选择.本题较易,注重了基础知识、基本计算能力的考查.8、D【解析】

利用指数函数对数函数的单调性,利用指数对数函数的运算比较得解.【详解】因为27-1故选:D【点睛】本题主要考查指数函数对数函数的单调性的应用,意在考查学生对这些知识的理解掌握水平,属于基础题.9、C【解析】

由已知利用等差数列的性质可得,由正弦定理可得,根据余弦定理可求,即可判断三角形的形状.【详解】解:由题意可知,,因为,所以,则,所以,所以,故为等边三角形.故选:.【点睛】本题主要考查了等差数列的性质,正弦定理,余弦定理在解三角形中的应用,考查了转化思想,属于基础题.10、D【解析】

在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,即可得出结论.【详解】在频率等高条形图中,与相差很大时,我们认为两个分类变量有关系,四个选项中,即等高的条形图中x1,x2所占比例相差越大,则分类变量x,y关系越强,故选D.【点睛】本题考查独立性检验内容,使用频率等高条形图,可以粗略的判断两个分类变量是否有关系,是基础题11、C【解析】分析:由题得恒成立,再解这个恒成立问题即得解.详解:由题得恒成立,a=0时,不等式恒成立.a≠0时,由题得综合得故答案为C.点睛:(1)本题主要考查函数的定义域和二次不等式的恒成立问题,意在考查学生对这些知识的掌握水平和分析转化能力数形结合思想方法.(2)解答本题恒成立时,一定要讨论a=0的情况,因为不一定时一元二次不等式.12、A【解析】求出集合中的函数的定义域得到:,即可化为或解得,即,则故选二、填空题:本题共4小题,每小题5分,共20分。13、或【解析】假设的内容应是否定结论,由否定后为.14、【解析】

本题先计算,而后求其模.或直接利用模的性质计算.容易题,注重基础知识、运算求解能力的考查.【详解】.【点睛】本题考查了复数模的运算,属于简单题.15、【解析】

由正弦定理和已知,可以求出角的大小,进而可以求出的值,结合面积公式和余弦定理可以求出的值,最后求出周长.【详解】解:由正弦定理及得,,,,又,,,由余弦定理得,.又,,,,的周长为.【点睛】本题考查了正弦定理、余弦定理、面积公式,考查了数学运算能力.16、3或4【解析】

结合组合数公式结合性质进行求解即可.【详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【点睛】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0;(2)最小正周期为;(3)最大值为2,取得最大值的x的集合为.【解析】

(1)直接代入求值;(2)运用辅助角公式化简函数解析式,运用最小正周期公式求解即可;(3)由(2)可知函数化简后的解析式,可利用正弦函数的性质,可以求出函数的最大值以及此时x的集合.【详解】(1);(2);最小正周期为;(3)因为;所以当时,即时,函数的最大值为2,取得最大值的x的集合为.【点睛】本题考查了正弦型函数的最小正周期和最大值问题,运用辅助角公式是解题的关键.18、(Ⅰ)见解析(Ⅱ)【解析】

(Ⅰ)结合线面垂直的判定定理即可证明;(Ⅱ)采用建系法,以为原点建立空间直角坐标系,分别求出平面和平面的法向量,再由向量夹角的余弦公式求解即可;【详解】(Ⅰ)由于平面,平面,则,由题意可知,且,由线面垂直的判定定理可得平面.(Ⅱ)以点为坐标原点,平面内与垂直的直线为轴,,方向为轴,轴建立如图所示的空间直角坐标系,易知:,,,,由可得点的坐标为,由可得,设平面的法向量为:,则,据此可得平面的一个法向量为:,很明显平面的一个法向量为,,二面角的平面角为锐角,故二面角的余弦值为.【点睛】本题考查线面垂直的证明,向量法求解二面角的平面角大小,属于中档题19、(1);(2).【解析】试题分析:(1)由题意得,所以,又由抛物线定义可知,,由椭圆定义知,,得,故,从而椭圆的方程为;(2),,联立得,代入椭圆方程,所以,又,所以.试题解析:(1)由题意得,所以,又由抛物线定义可知,得,于是易知,从而,由椭圆定义知,,得,故,从而椭圆的方程为.(2)设,,,则由知,,,且,①又直线:(其中)与圆相切,所以有,由,可得(,),②又联立消去得,且恒成立,且,,所以,所以得,代入①式,得,所以,又将②式代入得,,,,易知,且,所以.20、(1)证明见解析.(2).【解析】试题分析:(1)先根据平几知识计算得,再根据线面垂直判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面法向量,利用向量数量积得向量夹角,最后根据线面角与向量夹角互余关系求结果.试题解析:(1)证明:等腰梯形中,故在中,,所以平面(2)作于,以为轴建立如图的空间直角坐标系,则求得平面的法向量为又,所以即与平面所成角的正弦值等于21、【解析】分析:先化简命题p和q,再根据为假,为真得到真假或假真,最后得到m的不等式组,解不等式组即得m的取值范围.详解:真:,真:或∴因为为假,为真所以真假或假真,真假得假真得∴范围为.点睛:(1)本题主要考查命题的化简和复合命题的真假,意在考查学生对这些知识的掌握水平.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论