![2023届云南省玉溪市江川一中数学高二下期末综合测试试题含解析_第1页](http://file4.renrendoc.com/view/8f97f06cfd345207cf1992f357950b6b/8f97f06cfd345207cf1992f357950b6b1.gif)
![2023届云南省玉溪市江川一中数学高二下期末综合测试试题含解析_第2页](http://file4.renrendoc.com/view/8f97f06cfd345207cf1992f357950b6b/8f97f06cfd345207cf1992f357950b6b2.gif)
![2023届云南省玉溪市江川一中数学高二下期末综合测试试题含解析_第3页](http://file4.renrendoc.com/view/8f97f06cfd345207cf1992f357950b6b/8f97f06cfd345207cf1992f357950b6b3.gif)
![2023届云南省玉溪市江川一中数学高二下期末综合测试试题含解析_第4页](http://file4.renrendoc.com/view/8f97f06cfd345207cf1992f357950b6b/8f97f06cfd345207cf1992f357950b6b4.gif)
![2023届云南省玉溪市江川一中数学高二下期末综合测试试题含解析_第5页](http://file4.renrendoc.com/view/8f97f06cfd345207cf1992f357950b6b/8f97f06cfd345207cf1992f357950b6b5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在用反证法证明“已知,且,则中至少有一个大于1”时,假设应为()A.中至多有一个大于1 B.全都小于1C.中至少有两个大于1 D.均不大于12.若(为虚数单位),则复数()A. B. C. D.3.函数的大致图象为()A. B.C. D.4.设复数(为虚数单位),则的虚部为()A. B. C. D.5.用反证法证明命题:“若实数,满足,则,全为0”,其反设正确的是()A.,至少有一个为0 B.,至少有一个不为0C.,全不为0 D.,全为06.某所学校在一个学期的开支分布的饼图如图1所示,在该学期的水、电、交通开支(单位:万元)如图2所示,则该学期的电费开支占总开支的百分比为().A. B. C. D.7.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知集合,,,则()A. B. C. D.9.如果f(n)∈N+),那么f(n+1)-f(n)等于()A. B. C. D.10.设,则的值为()A. B. C. D.11.抽查10件产品,设事件A:至少有两件次品,则A的对立事件为()A.至多两件次品 B.至多一件次品C.至多两件正品 D.至少两件正品12.椭圆的左右焦点分别是,以为圆心的圆过椭圆的中心,且与椭圆交于点,若直线恰好与圆相切于点,则椭圆的离心率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知焦点在轴上的双曲线的渐近线方程为,则双曲线的离心率为____.14.正方体中,、分别是、的中点,则直线与平面所成角的正弦值为______.15.已知函数fx=axlnx,x∈0,+∞,其中a为实数,f'x为fx的导函数,16.设等差数列的前项和为,若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了调查中学生每天玩游戏的时间是否与性别有关,随机抽取了男、女学生各50人进行调查,根据其日均玩游戏的时间绘制了如下的频率分布直方图.(1)求所调查学生日均玩游戏时间在分钟的人数;(2)将日均玩游戏时间不低于60分钟的学生称为“游戏迷”,已知“游戏迷”中女生有6人;①根据已知条件,完成下面的列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别关系;非游戏迷游戏迷合计男女合计②在所抽取的“游戏迷”中按照分层抽样的方法抽取10人,再在这10人中任取9人进行心理干预,求这9人中男生全被抽中的概率.附:(其中为样本容量).0.150.100.050.0250.0102.0722.7063.8415.0246.63518.(12分)已知椭圆:的左、右焦点分别为、,椭圆的离心率为.(1)求椭圆的标准方程;(2)过点的直线与椭圆相交于,两点,求的面积的最大值.19.(12分)如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,,且,E为PD中点.(I)求证:平面ABCD;(II)求二面角B-AE-C的正弦值.20.(12分)已知某单位甲、乙、丙三个部门共有员工60人,为调查他们的睡眠情况,通过分层抽样获得部分员工每天睡眠的时间,数据如下表(单位:小时)甲部门678乙部门5.566.577.58丙部门55.566.578.5(1)求该单位乙部门的员工人数?(2)从甲部门和乙部门抽出的员工中,各随机选取一人,甲部门选出的员工记为A,乙部门选出的员工记为B,假设所有员工睡眠的时间相互独立,求A的睡眠时间不少于B的睡眠时间的概率;(3)若将每天睡眠时间不少于7小时视为睡眠充足,现从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,求随机变量X的分布列与数学期望.21.(12分)已知函数.(1)函数在区间上有两个不同的零点,求实数的取值范围;(2)若连续掷两次骰子(骰子六个表面上标注点数分别为1、2、3、4、5、6),得到点数分别为和,记事件在恒成立},求事件发生的概率.22.(10分)已知椭圆的离心率为,且.(1)求椭圆的标准方程;(2)直线:与椭圆交于A,B两点,是否存在实数,使线段AB的中点在圆上,若存在,求出的值;若不存在,说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
直接利用反证法的定义得到答案.【详解】中至少有一个大于1的反面为均不大于1,故假设应为:均不大于1.故选:.【点睛】本题考查了反证法,意在考查学生对于反证法的理解.2、B【解析】由可得:,故选B.3、D【解析】
判断函数的奇偶性和对称性,利用的符号进行排除即可.【详解】,函数是奇函数,图象关于原点对称,排除,排除,故选:.【点睛】本题考查函数的图象的判断与应用,考查函数的零点以及特殊值的计算,是中档题;已知函数解析式,选择其正确图象是高考中的高频考点,主要采用的是排除法,最常见的排出方式有根据函数的定义域、值域、单调性、奇偶性、周期性等性质,同时还有在特殊点处所对应的函数值或其符号,其中包括等.4、C【解析】分析:先化简复数z,再求z的虚部.详解:由题得=,故复数z的虚部为-1,故答案为C.点睛:(1)本题主要考查复数的运算,意在考查学生对该知识的掌握水平和运算能力.(2)复数的实部是a,虚部为b,不是bi.5、B【解析】
反证法证明命题时,首先需要反设,即是假设原命题的否定成立即可.【详解】因为命题“若实数,满足,则,全为0”的否定为“若实数,满足,则,至少有一个不为0”;因此,用反证法证明命题:“若实数,满足,则,全为0”,其反设为“,至少有一个不为0”.故选B【点睛】本题主要考查反证的思想,熟记反证法即可,属于常考题型.6、B【解析】
结合图表,通过计算可得:该学期的电费开支占总开支的百分比为×20%=11.25%,得解.【详解】由图1,图2可知:该学期的电费开支占总开支的百分比为×20%=11.25%,故选B.【点睛】本题考查了识图能力及进行简单的合情推理,属简单题.7、A【解析】
利用充分条件和必要条件的定义进行判断即可.【详解】若,则必有.若,则或.所以是的充分不必要条件.故选:A.【点睛】本题主要考查充分条件和必要条件的定义和判断.8、D【解析】
按照补集、交集的定义,即可求解.【详解】,,.
故选:D.【点睛】本题考查集合的混合计算,属于基础题.9、D【解析】分析:直接计算f(n+1)-f(n).详解:f(n+1)-f(n)故答案为D.点睛:(1)本题主要考查函数求值,意在考查学生对该知识的掌握水平.(2)不能等于,因为前面还有项没有减掉.10、A【解析】
解析:当时,;当时,,故,应选答案A.11、B【解析】试题分析:事件A不包含没有次品或只有一件次品,即都是正品或一件次品9件正品,所以事件A的对立事件为至多一件次品.故B正确.考点:对立事件.12、A【解析】
由题得,再利用椭圆定义得的长度,利用勾股定理求解即可【详解】由题得,且又由勾股定理得,解得故选:A【点睛】本题考查椭圆的定义及几何意义,准确求得是关键,是基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
焦点在轴上的双曲线的渐近线方程为,可知,由此可求出双曲线的离心率。【详解】由题可设焦点在轴上的双曲线方程为,由于该双曲线的渐近线方程为,则,在双曲线中,所以双曲线的离心率,故双曲线的离心率为。【点睛】本题考查双曲线的离心率的求法,双曲线渐近方程的应用,属于基础题。14、.【解析】
设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立空间直角坐标系,计算出平面的一个法向量,利用空间向量法计算出直线与平面所成角的正弦值.【详解】设正方体的棱长为,以点为坐标原点,、、所在直线分别为轴、轴、轴建立如下图所示空间直角坐标系.则点、、、、、,设平面的一个法向量为,则,.由,即,得,令,则,.可知平面的一个法向量为,又.,因此,直线与平面所成角的正弦值为,故答案为.【点睛】本题考查直线与平面所成角的正弦的计算,解题的关键就是建立空间直角坐标系,将问题利用空间向量法进行求解,考查运算求解能力,属于中等题.15、3【解析】试题分析:f'(x)=alnx+a,所以考点:导数的运算.【名师点睛】(1)在解答过程中常见的错误有:①商的求导中,符号判定错误.②不能正确运用求导公式和求导法则.(2)求函数的导数应注意:①求导之前利用代数或三角变换先进行化简,减少运算量.②根式形式,先化为分数指数幂,再求导.③复合函数求导先确定复合关系,由外向内逐层求导,必要时可换元处理.16、【解析】
由可得,然后根据等差数列的通项公式可得,即为所求.【详解】设等差数列的公差为,则,∴.∴.故答案为1.【点睛】本题考查等差数列中基本量的运算,解题的关键在于将问题转化为和进行处理,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)人(2)①填表见解析,能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.②【解析】
(1)计算日均玩游戏时间在分钟的频率,再乘以总人数即可;(2)①计算“游戏迷”有人,由于“游戏迷”中女生有6人,得男生有14人,即可列表,计算观测值,对照临界值得出结论;②利用古典概型求解即可【详解】(1)日均玩游戏时间在分钟的频率为,所以,所调查学生日均玩游戏时间在分钟的人数为.(2)“游戏迷”的频率为,共有“游戏迷”人,由于“游戏迷”中女生有6人,故男生有14人.①根据男、女学生各有50人,得列联表如下:非游戏迷游戏迷合计男361450女44650合计8020100.故能在犯错误的概率不超过0.05的前提下认为“游戏迷”和性别有关.②“游戏迷”中女生有6人,男生有14人,按照分层抽样的方法抽取10人,则女生有3人,男生有7人.从中任取9人,只剩1人,则共有10种基本情况,记这9人中男生全被抽中为事件A,则有两名女生被选中,共有种基本情况,因此所求事件A的概率.【点睛】本题考查了列联表与独立性检验的应用问题,也考查了频率分布直方图与古典概型的概率计算问题,是基础题.18、(1);(2).【解析】
(1)根据焦点坐标可得,根据离心率求得,结合,求得,则问题得解;(2)设出直线方程,联立椭圆方程,结合韦达定理,即可容易求得结果.【详解】(1)由题可知,,又因为,故可得;由,可得.故椭圆方程为.(2)容易知直线的斜率不为零,故可设直线的方程为,联立椭圆方程可得:,设两点坐标为,故可得则,故的面积令,,故,又在区间上单调递增,故在区间上单调递减,故,当且仅当,即时取得最大值.故面积的最大值为.【点睛】本题考查椭圆方程的求解,涉及椭圆中三角形面积的最值问题,属综合中档题.19、(I)见解析(II)【解析】
(I)根据题目所给条件,利用直线与平面垂直的判定方法分别证明出平面PAB以及平面,进而得到和,从而推得线面垂直.(II)根据已知条件,以A为原点,AB为轴,AD为轴,AP为轴建立直角坐标系,分别求出平面ABE和平面AEC的法向量,最后利用向量法求出二面角B-AE-C的正弦值.【详解】解:(I)证明:∵底面ABCD为正方形,∴,又,,∴平面PAB,∴.同理,∴平面ABCD(II)建立如图的空间直角坐标系A-xyz,则,,,,易知设为平面ABE的一个法向量,又,,∴令,,得.设为平面AEC的一个法向量,又∴令,得.∴二面角B-AE-C的正弦值为.【点睛】本题主要考查了通过证明直线与平面垂直来推出直线与直线垂直,以及利用向量法求二面角的问题,解题时要注意根据图形特征或者已知要求确定二面角是锐角或钝角,从而得出问题的结果.20、(1)24人;(2);(3)X的分布列见解析;数学期望为1【解析】
(1)分层抽样共抽取:3+6+6=15名员工,其中该单位乙部门抽取6名员工,由此能求出该单位乙部门的员工人数.(2)基本事件总数n18,利用列举法求出A的睡眠时间不少于B的睡眠时间包含的基本事件个数,由此能求出A的睡眠时间不少于B的睡眠时间的概率.(3)X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和数学期望E(X).【详解】(1)由题意,得到分层抽样共抽取:3+6+6=15名员工,其中该单位乙部门抽取6名员工,∴该单位乙部门的员工人数为:624人.(2)由题意甲部门抽取3名员工,乙部门抽取6名员工,从甲部门和乙部门抽出的员工中,各随机选取一人,基本事件总数n18,A的睡眠时间不少于B的睡眠时间包含的基本事件(a,b)有12个:(6,5.5),(6,6),(7,5.5),(7,6),(7,6.5),(7,7),(8,5.5),(8,6),(8,6.5),(8,7),(8,7.5),(8,8),∴A的睡眠时间不少于B的睡眠时间的概率p.(3)由题意从丙部门抽出的员工有6人,其中睡眠充足的员工人数有2人,从丙部门抽出的员工中随机抽取3人做进一步的身体检查.用X表示抽取的3人中睡眠充足的员工人数,则X的可能取值为0,1,2,P(X=0),P(X=1),P(X=2),∴X的分布列为:X012PE(X)1.【点睛】本题考查离散型
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 化学-湖南省佩佩教育湖南省长沙市四大名校2025届高三下学期2月联考试题和答案
- 临床试验合作协议书范本
- 资产收购居间合同范本
- 委托投资协议书范本
- 社交电商品牌的营销模式创新
- 环保材料在科技产业中的创新发展
- 股票质押合同范本
- 宜泊智慧停车场APP合作协议书范本
- 现代艺术在商业空间中的创新应用
- 饭店雇佣员工合同范本
- 2025年月度工作日历含农历节假日电子表格版
- 2022年普通高等学校招生全国统一考试数学试卷 新高考Ⅰ卷(含解析)
- (完整版)中心医院心血管学科的专科建设与发展规划
- 劳动合同法草案的立法背景与创新黎建飞中国人民大学法学院教授
- 第三章 检测仪表与传感器
- 服装QC尾期查货报告(中英双语)
- 电机学辜承林(第三版)第1章
- 医疗机构停业(歇业)申请书
- Counting Stars 歌词
- 肩锁关节脱位的分型及其endobutton手术治疗
- 管理系统中计算机应用PPT课件
评论
0/150
提交评论