![2023届云南省陆良县数学高二第二学期期末学业水平测试模拟试题含解析_第1页](http://file4.renrendoc.com/view/c23f8542334b2c7d6a715aa467b2a34c/c23f8542334b2c7d6a715aa467b2a34c1.gif)
![2023届云南省陆良县数学高二第二学期期末学业水平测试模拟试题含解析_第2页](http://file4.renrendoc.com/view/c23f8542334b2c7d6a715aa467b2a34c/c23f8542334b2c7d6a715aa467b2a34c2.gif)
![2023届云南省陆良县数学高二第二学期期末学业水平测试模拟试题含解析_第3页](http://file4.renrendoc.com/view/c23f8542334b2c7d6a715aa467b2a34c/c23f8542334b2c7d6a715aa467b2a34c3.gif)
![2023届云南省陆良县数学高二第二学期期末学业水平测试模拟试题含解析_第4页](http://file4.renrendoc.com/view/c23f8542334b2c7d6a715aa467b2a34c/c23f8542334b2c7d6a715aa467b2a34c4.gif)
![2023届云南省陆良县数学高二第二学期期末学业水平测试模拟试题含解析_第5页](http://file4.renrendoc.com/view/c23f8542334b2c7d6a715aa467b2a34c/c23f8542334b2c7d6a715aa467b2a34c5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.直线与圆有两个不同交点的充要条件是()A. B. C. D.2.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.33.椭圆的左右焦点分别是,以为圆心的圆过椭圆的中心,且与椭圆交于点,若直线恰好与圆相切于点,则椭圆的离心率为()A. B. C. D.4.为了落实中央提出的精准扶贫政策,永济市人力资源和社会保障局派人到开张镇石桥村包扶户贫困户,要求每户都有且只有人包扶,每人至少包扶户,则不同的包扶方案种数为()A. B. C. D.5.设向量与,且,则()A. B. C. D.6.如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g'(x)是g(x)的导函数,则g'(3)=().A.-1 B.0 C.2 D.47.下列四个命题中,真命题的个数是()①命题“若,则”;②命题“且为真,则有且只有一个为真命题”;③命题“所有幂函数的图象经过点”;④命题“已知是的充分不必要条件”.A.1 B.2 C.3 D.48.下列说法错误的是()A.在统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法B.在残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好C.线性回归方程对应的直线至少经过其样本数据点中的一个点D.在回归分析中,相关指数越大,模拟的效果越好9.设复数(为虚数单位),则的虚部为()A. B. C. D.10.若复数(其中为虚数单位,)为纯虚数,则等于()A. B. C. D.11.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是()A.北京大学、清华大学、复旦大学、武汉大学B.武汉大学、清华大学、复旦大学、北京大学C.清华大学、北京大学、武汉大学、复旦大学D.武汉大学、复旦大学、清华大学、北京大学12.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有()人.(K2≥k1)1.1511.111k13.8416.635A.12 B.6 C.11 D.18二、填空题:本题共4小题,每小题5分,共20分。13.已知命题p:∃x∈R,ex-mx=0,q:∀x∈R,x2-2mx+1≥0,若p∨(q)为假命题,则实数m的取值范围是________.14.若复数满足,则的取值范围是______.15.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8.高为4的等腰三角形,侧视图是一个底边长为6.高为4的等腰三角形,则该几何体的体积为______;侧面积为______.16.若方程有实根,则实数m的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数.(1)若是纯虚数,求;(2)若,求.18.(12分)4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动.为了解高三学生课外阅读情况,采用分层抽样的方法从高三某班甲、乙、丙、丁四个小组中随机抽取10名学生参加问卷调查.各组人数统计如下:(1)从参加问卷调查的10名学生中随机抽取两名,求这两名学生来自同一个小组的概率;(2)在参加问卷调查的10名学生中,从来自甲、丙两个小组的学生中随机抽取两名,用表示抽得甲组学生的人数,求的分布列和数学期望.19.(12分)已知数列各项均为正数,,,.(1)若,①求的值;②猜想数列的通项公式,并用数学归纳法证明;(2)若,证明:当时,.20.(12分)甲、乙两人做定点投篮游戏,已知甲每次投篮命中的概率均为,乙每次投篮命中的概率均为,甲投篮3次均未命中的概率为,甲、乙每次投篮是否命中相互之间没有影响.(Ⅰ)若甲投篮3次,求至少命中2次的概率;(Ⅱ)若甲、乙各投篮2次,设两人命中的总次数为,求的分布列和数学期望.21.(12分)如图,四棱锥中,底面ABCD为菱形,平面ABCD,BD交AC于点E,F是线段PC中点,G为线段EC中点.Ⅰ求证:平面PBD;Ⅱ求证:.22.(10分)已知函数.(1)求函数的定义域并判断奇偶性;(2)若,求实数m的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
由已知条件计算圆心到直线的距离和半径进行比较,即可求出结果【详解】圆,圆心到直线的距离小于半径,由点到直线的距离公式:,,故选【点睛】本题考查了直线与圆的位置关系,根据题意将其转化为圆心到直线的距离,然后和半径进行比较,较为基础.2、D【解析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=1.故答案选D.考点:利用导数研究曲线上某点切线方程.3、A【解析】
由题得,再利用椭圆定义得的长度,利用勾股定理求解即可【详解】由题得,且又由勾股定理得,解得故选:A【点睛】本题考查椭圆的定义及几何意义,准确求得是关键,是基础题4、C【解析】
先分组再排序,可得知这人所包扶的户数分别为、、或、、,然后利用分步计数原理可得出所求方案的数目.【详解】由题意可知,这人所包扶的户数分别为、、或、、,利用分步计数原理知,不同的包扶方案种数为,故选C.【点睛】本题考查排列组合的综合问题,考查分配问题,求解这类问题遵循先分组再排序的原则,再分组时,要注意平均分组的问题,同时注意分步计数原理的应用,考查分析问题和解决问题的能力,属于中等题.5、B【解析】
利用列方程,解方程求得的值,进而求得的值.【详解】由于,所以,即,而,故,故选B.【点睛】本小题主要考查向量数量积的坐标运算,考查二倍角公式,考查特殊角的三角函数值,属于基础题.6、B【解析】
将点3,1的坐标代入切线方程得出k的值,得出f'3=ky=gx求导得g'x【详解】将点3,1代入直线y=kx+2的方程得3k+2=1,得k=-13,所以,由于点3,1在函数y=fx的图象上,则f对函数gx=xfx∴g'3【点睛】本题考查导数的几何意义,在处理直线与函数图象相切的问题时,抓住以下两点:(1)函数在切点处的导数值等于切线的斜率;(2)切点是切线与函数图象的公共点。7、C【解析】
①令,研究其单调性判断.②根据“且”构成的复合命题定义判断.③根据幂函数的图象判断.④由,判断充分性,取特殊值判断必要性.【详解】①令,,所以在上递增所以,所以,故正确.②若且为真,则都为真命题,故错误.③因为所有幂函数的图象经过点,故正确.④因为,所以,故充分性成立,当时,推不出,所以不必要,故正确.故选:C【点睛】本题主要考查命题的真假判断,还考查了理解辨析的能力,属于基础题.8、C【解析】对于A,统计学中,独立性检验是检验两个分类变量是否有关系的一种统计方法,正确;对于B,残差图中,残差分布的带状区域的宽度越狭窄,其模拟的效果越好,正确;对于C,线性回归方程对应的直线过样本中心点,不一定过样本数据中的点,故C错误;对于D,回归分析中,相关指数R2越大,其模拟的效果就越好,正确.故选C.9、C【解析】分析:先化简复数z,再求z的虚部.详解:由题得=,故复数z的虚部为-1,故答案为C.点睛:(1)本题主要考查复数的运算,意在考查学生对该知识的掌握水平和运算能力.(2)复数的实部是a,虚部为b,不是bi.10、D【解析】
先利用复数的除法将复数表示为一般形式,结合题中条件求出的值,再利用复数求模公式求出.【详解】,由于复数为纯虚数,所以,,得,,因此,,故选D.【点睛】本题考查复数的除法、复数的概念以及复数求模,解决复数问题,要通过复数的四则运算将复数表示为一般形式,结合复数相关知识求解,考查计算能力,属于基础题.11、D【解析】
推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【点睛】本题考查了逻辑推理,意在考查学生的推理能力.12、A【解析】
由题,设男生人数x,然后列联表,求得观测值,可得x的范围,再利用人数比为整数,可得结果.【详解】设男生人数为,则女生人数为,则列联表如下:喜欢抖音不喜欢抖音总计男生女生总计若有95%的把握认为是否喜欢抖音和性别有关,则即解得又因为为整数,所以男生至少有12人故选A【点睛】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】
根据复合函数的真假关系,确定命题p,q的真假,利用函数的性质分别求出对应的取值范围即可得到结论.【详解】若p∨(¬q)为假命题,则p,¬q都为假命题,即p是假命题,q是真命题,由ex﹣mx=0得m=,设f(x)=,则f′(x)==,当x>1时,f′(x)>0,此时函数单调递增,当0<x<1时,f′(x)<0,此时函数单调递递减,当x<0时,f′(x)<0,此时函数单调递递减,∴当x=1时,f(x)=取得极小值f(1)=e,∴函数f(x)=的值域为(﹣∞,0)∪[e,+∞),∴若p是假命题,则0≤m<e;命题q为真命题时,有Δ=4m2-4≤0,则-1≤m≤1.所以当p∨(q)为假命题时,m的取值范围是[0,1].故答案为:【点睛】“”,“”“”等形式命题真假的判断步骤:(1)确定命题的构成形式;(2)判断其中命题的真假;(3)确定“”,“”“”等形式命题的真假.14、【解析】
根据复数的模的几何意义,结合的几何意义,设出圆上任意一点坐标,利用两点间距离公式列式,化简求得的取值范围.【详解】由于复数满足,故复数对应的点在圆心为原点,半径为的圆上,设圆上任意一点的坐标为.表示圆上的点到和两点距离之和,即①,①式平方得,由于,所以,所以,所以,所以.故答案为:.【点睛】本小题主要考查复数模的几何意义,考查运算求解能力,属于中档题.15、64【解析】
根据三视图可得该几何体表示一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,其中高为4,即可利用体积公式和表面积公式求解,得到答案.【详解】由题意可知,这个几何体是一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,四棱锥高为4,所以四棱锥的体积为,四棱锥的侧面为等腰三角形,底边长分别为,斜高分别为,所以侧面积为.【点睛】本题主要考查了空间几何体的三视图的应用,以及四棱锥的体积与侧面积的计算,其中解答中根据几何体的三视图得到几何体的结构特征是解答的关键,着重考查了推理与运算能力,属于基础题.16、.【解析】分析:将原式变形为=x+m,根据直线与椭圆相交相切的性质即可得出.详解:由题得若方程有实根等价于=x+m有解,y=等价于:表示x轴上方的部分椭圆,当直线y=x+m经过椭圆的又顶点(2,0)时为相交的一个临界值此时m=-2,当直线与椭圆的左上半部分相切时为第二个临界值,此时联立方程得:,求得:,因为与上半部分相交故直线与y轴的交点为正值,故m=,所以综合得:m的取值范围是.,故答案为.点睛:本题考查了直线与椭圆圆相交相切的性质、方程的根转化函数有解问题、数形结合思想方法,考查了推理能力与计算能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或1-2i.【解析】分析:(1)根据纯虚数的定义得到,解不等式组即得a的值.(2)由题得,解之得a的值,再求.详解:(1)若是纯虚数,则,所以(2)因为,所以,所以或.当时,,当时,.点睛:(1)本题主要考查复数的概念、复数的模和共轭复数,意在考查学生对这些知识的掌握水平和基本的运算能力.(2)复数为纯虚数不要把下面的b≠0漏掉了.18、(1);(2)答案见解析.【解析】试题分析:(1)从参加问卷调查的10名学生中随机抽取两名的取法共有种,来自同一小组的取法共有,所以.(2)的可能取值为0,1,2,,,,写出分布列,求出期望.试题解析:(1)由已知得,问卷调查中,从四个小组中抽取的人数分别为3,4,2,1,从参加问卷调查的10名学生中随机抽取两名的取法共有种,这两名学生来自同一小组的取法共有,所以.(2)由(1)知,在参加问卷调查的10名学生中,来自甲、丙两小组的学生人数分别为3,2.的可能取值为0,1,2,,,.∴的分布列为:.19、(1)①;;②(2)见证明【解析】
(1)①根据递推公式,代入求值即可;②观察已知的数列的前几项,根据其特征,先猜想其通项公式,之后应用数学归纳法证明即可得结果;(2)应用数学归纳法证明.【详解】(1)当时,即当时,当时,当时,②由此猜想:证明如下:①当时,,成立;②假设当时,猜想也成立,即,则当时,.即当时,猜想也成立.由①②得,猜想成立,即.()(2)当时,即当时,由知不等式成立.假设当时,命题也成立,即.由即当时,命题也成立.由①②得,原命题成立,即当时,.【点睛】该题考查的是数列的有关问题,涉及到的知识点有根据递推公式求数列的特定项,根据已知的数列的前几项猜想数列的通项公式,应用数学归纳法证明问题,属于中档题目.20、(Ⅰ).(Ⅱ)见解析.【解析】试题分析:(1)本题为独立重复试验,根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025至2031年中国多缸模具行业投资前景及策略咨询研究报告
- 《项目管理汇报模板》课件
- 2025至2031年中国中空液压夹头行业投资前景及策略咨询研究报告
- 《画自己》课件 2024-2025学年 湘美版(2024)初中美术七年级上册
- 第一单元 职业生涯规划与职业理想课件
- 《酬乐天频梦微之》课件
- 《车险定损流程》课件
- 仪器分析判断练习测试题附答案
- 《图案形式美自》课件
- 《重组DNA技术交》课件
- 医院压力性损伤患者质控标准
- 人教版七年级上册数学试卷全册
- 中职-中国历史教案
- 医疗机构规章制度诊所诊所规章制度
- 六年级小升初语文试卷 [六年级下册语文小升初试卷
- 幼儿园中班开学第一课
- 饮品店操作流程图
- 风居住的街道钢琴二胡合奏谱
- PADS元件封装制作规范要点
- 胶水行业中最常用的英文术语
- citrix桌面虚拟化平台健康检查指南10
评论
0/150
提交评论