版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.圆与的位置关系是()A.相交 B.外切 C.内切 D.相离.2.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球3.某教师有相同的语文参考书本,相同的数学参考书本,从中取出本赠送给位学生,每位学生本,则不同的赠送方法共有()A.种 B.种 C.种 D.种4.若关于x的方程|x4-x3|=ax在R上存在4个不同的实根,则实数a的取值范围为()A. B. C. D.5.设,,,则A. B. C. D.6.设有两条直线,和两个平面、,则下列命题中错误的是A.若,且,则或B.若,且,,则C.若,且,,则D.若,且,则7.已知袋中装有除颜色外完全相同的5个球,其中红球2个,白球3个,现从中任取1球,记下颜色后放回,连续摸取3次,设ξ为取得红球的次数,则PA.425 B.36125 C.98.下列函数中,即是奇函数,又在上单调递增的是A. B. C. D.9.等差数列{an}的前n项和Sn,且4≤S2≤6,15≤S4≤21,则a2的取值范围为()A. B. C. D.10.名学生在一次数学考试中的成绩分别为如,,,…,,要研究这名学生成绩的平均波动情况,则最能说明问题的是()A.频率 B.平均数 C.独立性检验 D.方差11.定义上的函数的导函数满足,设,则下列判断正确的是()A. B. C. D.12.,则的值为()A.2B.-2C.8D.-8二、填空题:本题共4小题,每小题5分,共20分。13.若复数满足,则的实部是_________.14.设是双曲线的两个焦点,是该双曲线上一点,且,则的面积等于__________.15.如图所示,满足如下条件:①第行首尾两数均为;②表中的递推关系类似“杨辉三角”.则第行的第2个数是__________.16.已知抛物线上的点,则到准线的距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数在复平面内对应的点位于第二象限,且满足.(1)求复数;(2)设复数满足:为纯虚数,,求的值.18.(12分)在中,角,,所对的边分别为,,,已知.(Ⅰ)求的值;(Ⅱ)若,求.19.(12分)若数列的前项和为,且,.(1)求,,;(2)猜想数列的通项公式,并用数学归纳法加以证明.20.(12分)已知:在中,,,分别是角,,所对的边长,是和的等差中项.(Ⅰ)求角;(Ⅱ)若的面积,且,求的周长.21.(12分)某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先用2、3、4、5月的4组数据求线性回归方程,再用1月和6月的2组数据进行检验.(1)请根据2、3、4、5月的数据,求出y关于x的线性回归方程;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?(参考公式:,)参考数据:11×25+13×29+12×26+8×16=1092,112+132+122+82=498.22.(10分)设是抛物线的焦点,是抛物线上三个不同的动点,直线过点,,直线与交于点.记点的纵坐标分别为.(Ⅰ)证明:;(Ⅱ)证明:点的横坐标为定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
试题分析:由题是给两圆标准方程为:,因为,所以两圆相离,故选D.考点:圆与圆的位置关系.2、C【解析】
从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.3、B【解析】若本中有本语文和本数学参考,则有种方法,若本中有本语文和本参考,则有种方法,若本中有语文和本参考,则有种方法,若本都是数学参考书,则有一种方法,所以不同的赠送方法共有有,故选B.4、A【解析】
根据方程和函数的关系转化为函数,利用参数分离法,构造函数,求函数的导数,研究函数的单调性和极值,利用数形结合进行求解即可.【详解】当x=0时,0=0,∴0为方程的一个根.当x>0时,方程|x4﹣x3|=ax等价为a=|x3﹣x2|,令f(x)=x3﹣x2,f′(x)=3x2﹣2x,由f′(x)<0得0<x<,由f′(x)>0得x<0或x>,∴f(x)在(0,)上递减,在上递增,又f(1)=0,∴当x=时,函数f(x)取得极小值f()=﹣,则|f(x)|取得极大值|f()|=,∴设的图象如下图所示,则由题可知当直线y=a与g(x)的图象有3个交点时0<a<,此时方程|x4﹣x3|=ax在R上存在4个不同的实根,故.故答案为:A【点睛】(1)本题主要考查函数与方程的应用,考查利用导数求函数的单调区间,考查函数的零点问题,意在考查学生对这些知识的掌握水平和数形结合分析推理能力.(2)解答本题的关键有两点,其一是分离参数得到a=|x3﹣x2|,其二是利用导数分析函数的单调性得到函数的图像.5、D【解析】
依换底公式可得,从而得出,而根据对数函数的单调性即可得出,从而得出,,的大小关系.【详解】由于,;,又,.故选.【点睛】本题主要考查利用对数函数的单调性比较大小以及换底公式的应用.6、D【解析】
对A,直接进行直观想象可得命题正确;对,由线面垂直的性质可判断;对,由线面垂直的性质定理可判断;对D,也有可能.【详解】对A,若,且,则或,可借助长方体直接进行观察命题成立,故A正确;对B,若,且,可得,又,则由线面垂直的性质可知,故B正确;对C,若,且,可得,又,由线面垂直的性质定理可知,故C正确;对D,若,且,则也有可能,故D错误.故选:D.【点睛】本题考查空间中直线与直线、直线与平面、平面与平面之间的位置关系,熟练掌握空间线面之间关系的判定方法及性质定理是解答此类问题的关键.7、B【解析】
先根据题意得出随机变量ξ~B3,25【详解】由题意知,ξ~B3,15故选:B。【点睛】本题考查二项分布概率的计算,关键是要弄清楚随机变量所服从的分布,同时也要理解独立重复试验概率的计算公式,着重考查了推理与运算能力,属于中等题。8、B【解析】分析:对四个选项分别进行判断即可得到结果详解:对于,,,,不是奇函数,故错误对于,,,当时,,函数在上不单调,故错误对于,函数在上单调递减,故错误故选点睛:对函数的奇偶性作出判断可以用其定义法,单调性的判断可以根据函数的图像性质,或者利用导数来判断。9、B【解析】
首先设公差为,由题中的条件可得和,利用待定系数法可得,结合所求的范围及不等式的性质可得.【详解】设公差为,由,得,即;同理由可得.故可设,所以有,所以有,解得,即,因为,.所以,即.故选:B.【点睛】本题主要考查不等式的性质及等差数列的运算,利用不等式求解范围时注意放缩的尺度,运算次数越少,范围越准确.10、D【解析】分析:直接根据频率、平均数、独立性检验、方差的基本定义判断即可.详解:因为频率表示可能性大小,错;平均数表示平均水平的高低,错;独立性检验主要指两个变量相关的可能性大小,错;方差表示分散与集中程度以及波动性的大小,对,故选D.点睛:本题主要考查频率、平均数、独立性检验、方差的基本定义,属于简单题.11、A【解析】
设,故,函数单调递减,,代入化简得到答案.【详解】设,故,所以在上单调递减,故,即,即,故.故选:.【点睛】本题考查了根据函数单调性比较函数值,构造函数是解题的关键.12、D【解析】试题分析:,所以当时,;当时,,故考点:二项式定理二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由得出,再利用复数的除法法则得出的一般形式,可得出复数的实部.【详解】,,因此,复数的实部为,故答案为.【点睛】本题考查复数的概念,同时也考查了复数的除法,解题时要利用复数的四则运算法则将复数表示为一般形式,考查计算能力,属于基础题.14、12【解析】
通过双曲线的定义可先求出的长度,从而利用余弦定理求得,于是可利用面积公式求得答案.【详解】由于,因此,,故,由于即,而,所以,,,所以,因此.【点睛】本题主要考查双曲线定义,余弦定理,面积公式的综合应用,意在考查学生的分析能力,计算能力及转化能力,难度中等.15、【解析】
归纳前几行的第二个数,发现,第行的第2个数可以用来表示,化简上式由此可以得到答案.【详解】由图表可知第行的第2个数为:.故答案为:.【点睛】本题是一道找规律的题目,考查归纳推理,掌握归纳推理找规律的方法是解题的关键.16、【解析】
利用点的坐标满足抛物线方程,求出,然后求解准线方程,即可推出结果。【详解】由抛物线上的点可得,所以抛物线方程:,准线方程为,则到准线的距离为故答案为:【点睛】本题考查抛物线方程,需熟记抛物线准线方程的求法,属于基础题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:(1)解一元二次方程,得到,根据在复平面内对应的点位于第二象限,即可判断的取值。(2)根据复数的乘法运算、纯虚数的概念、模的定义,联立方程求得x、y的值,进而求得的值。详解:(1)因为,所以,又复数对应的点位于第二象限,所以;(2)因为,又为纯虚数,所以,有得,解得,或,;所以.点睛:本题考查了复数相等、纯虚数等概念和复数的混合运算,对基本的运算原理要清晰,属于基础题。18、(1);(2)或.【解析】试题分析:(1)由已知利用三角形内角和定理,三角函数恒等变换的应用化简即可求值;(2)由已知利用正弦定理及(1)可得,进而可求角.试题解析:(Ⅰ),故,∴.(Ⅱ)由正弦定理得,由(Ⅰ)知,∴,∴或,∴或.19、(1);(2),证明见解析【解析】
(1)由已知条件分别取,能依次求出,,的值;(2)猜想.证明当是否成立,假设时,猜想成立,即:,证明当也成立,可得证明【详解】解:(1)由题意:,,当时,可得,可得同理当时:,可得当时:,可得(2)猜想.证明如下:①时,符合猜想,所以时,猜想成立.②假设时,猜想成立,即:.(),,两式作差有:,又,所以对恒成立.则时,,所以时,猜想成立.综合①②可知,对恒成立.【点睛】本题主要考查数列的递推式及通项公式的应用,数学归纳法的证明方法的应用,考查学生的计算能力与逻辑推理能力,属于中档题.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)根据正弦定理得到,即,解得答案.(Ⅱ)根据面积公式得到,根据余弦定理得到,得到周长.【详解】(Ⅰ)由已知得,由正弦定理得,即.∵,∴,∴.由于,∴.∵,∴.(Ⅱ)由得,,代入上式得.由余弦定理得,∴,∴,∴的周长为.【点睛】本题考查了正弦定理,余弦定理,面积公式,等差中项,意在考查学生的计算能力和综合应用能力.21、(1);(2)见解析【解析】试题分析:(1)根据所给的数据,求出x,y的平均数,根据求线性回归方程系数的方法,求出系数b,把b和x,y的平均数,代入求a的公式,做出a的值,写出线性回归方程.
(2)根据所求的线性回归方程,预报当自变量为10和6时的y的值,把预报的值同原来表中所给的10和6对应的值做差,差的绝对值不超过2,得到线性回归方程理想.试题解析:(1)由数据求得由公式求得再由所以关于的线性回归方程为.(2)当时,,;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度苏州相城区汽车销售公司购销合同
- 二零二四年度互联网金融服务平台技术开发与运营合同
- 挡土墙结构性安全鉴定合同(2篇)
- 二零二四年度美发店与政府机构之间的优惠政策申请合同
- 二零二四年度租赁合同租金调整机制及维修责任划分
- 环评服务合同模板
- 不锈钢制品批发合同
- 商业贷款合同模板无抵押
- 文艺演出北美巡演合同
- 兼职员工工作合同
- 第一单元《行进之歌》欣赏《中国人民解放军进行曲》课件人音版初中音乐七年级下册
- 小学生习惯养成行为标准40条
- 2024年辽宁省沈阳市中考数学模拟练习卷(含答案)
- 2024年湖南湘钢工程技术有限公司招聘笔试参考题库附带答案详解
- 放射科疑难病例分析
- 产业园区总体规划编制指南
- 中医基础理论(暨南大学)智慧树知到期末考试答案章节答案2024年暨南大学
- 休闲体育生涯发展展示
- 19R505-19G540室外管道钢结构架空综合管廊敷设
- MOOC 化学实验安全知识-中国科学技术大学 中国大学慕课答案
- 机械制造基础说课市公开课一等奖省赛课微课金奖课件
评论
0/150
提交评论