版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,则函数的定义域为()A. B. C. D.2.是的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知向量满足,且,则的夹角为()A. B. C. D.4.设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.35.已知向量与的夹角为,,,则()A. B.2 C.2 D.46.执行如图所示的程序框图,若输入m=1,n=3,输出的x=1.75,则空白判断框内应填的条件为()A. B. C. D.7.的展开式中,常数项为()A.-15 B.16 C.15 D.-168.已知函数在上的值域为,函数在上的值域为.若是的必要不充分条件,则的取值范围是()A. B.C. D.9.设x=,y=,z=-,则x,y,z的大小关系是()A.x>y>z B.z>x>yC.y>z>x D.x>z>y10.如图,用6种不同的颜色把图中A,B,C,D四块区域涂色分开,若相邻区域不能涂同一种颜色,则不同涂法的种数为()A.400 B.460 C.480 D.49611.已知直线(为参数)与曲线的相交弦中点坐标为,则等于()A. B. C. D.12.用四个数字1,2,3,4能写成()个没有重复数字的两位数.A.6 B.12 C.16 D.20二、填空题:本题共4小题,每小题5分,共20分。13.抛物线上的点到其焦点的距离为______.14.设随机变量,且,则实数的值为_______.15.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率是______.16.为了了解学校(共三个年级)的数学学习情况,教导处计算高一、高二、高三三个年级的平均成绩分别为,并进行数据分析,其中三个年级数学平均成绩的标准差为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点P(2,2),圆,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求点M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.18.(12分)已知函数,且的解集为.(1)求的值;(2)若,且,求证:.19.(12分)某企业有、两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:岗位岗位总计女生12820男生245680总计3664100(1)根据以上数据判断是有的把握认为招聘的、两个岗位与性别有关?(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.参考公式:,其中.参考数据:0.0500.0250.0103.8415.0246.63520.(12分)如图,底面,四边形是正方形,.(Ⅰ)证明:平面平面;(Ⅱ)求直线与平面所成角的余弦值.21.(12分)在中,内角对边的边长分别是,已知,.(Ⅰ)若的面积等于,求;(Ⅱ)若,求的面积.22.(10分)已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.(1)求m的值;(2)求函数g(x)=h(x)+,x∈的值域.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
函数中的取值范围与函数中的范围一样.【详解】因为函数的定义域为,所以,所以,所以函数的定义域为.选D.【点睛】求抽象函数定义域是一种常见的题型,已知函数的定义域或求函数的定义域均指自变量的取值范围的集合,而对应关系所作用的数范围是一致的,即括号内数的取值范围一样.2、B【解析】
分别判断充分性和必要性得到答案.【详解】所以(逆否命题)必要性成立当,不充分故是必要不充分条件,答案选B【点睛】本题考查了充分必要条件,属于简单题.3、C【解析】
设的夹角为,两边平方化简即得解.【详解】设的夹角为,两边平方,得,即,又,所以,则,所以.故选C【点睛】本题主要考查平面向量的数量积的计算和向量夹角的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.4、D【解析】D试题分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解:,∴y′(0)=a﹣1=2,∴a=1.故答案选D.考点:利用导数研究曲线上某点切线方程.5、C【解析】
利用即可解决.【详解】由题意得,因为向量与的夹角为,,,所以,所以,所以,所以选择C【点睛】本题主要考查了向量模的计算,在解决向量模的问题时通常先计算出平方的值,再开根号即可,属于基础题.6、B【解析】当第一次执行,返回,第二次执行,返回,第三次,,要输出x,故满足判断框,此时,故选B.点睛:本题主要考查含循环结构的框图问题.属于中档题.处理此类问题时,一般模拟程序的运行,经过几次运算即可跳出循环结束程序,注意每次循环后变量的变化情况,寻找规律即可顺利解决,对于运行次数比较多的循环结构,一般能够找到周期或规律,利用规律或周期确定和时跳出循环结构,得到问题的结果.7、B【解析】
把按照二项式定理展开,可得的展开式中的常数项.【详解】∵()•(1),故它的展开式中的常数项是1+15=16故选:B【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,项的系数的性质,熟记公式是关键,属于基础题.8、B【解析】
先计算出两个函数的值域,根据是的必要不充分条件可得是的真子集,从而得到的取值范围.【详解】因为在上单调递增,所以,又函数在上单调递增,于是.因为是的必要不充分条件,所以是的真子集,故有(等号不同时取),得,故选B.【点睛】(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含.9、D【解析】
先对y,z分子有理化,比较它们的大小,再比较x,z的大小得解.【详解】y==,z=-=,∵+>+>0,∴z>y.∵x-z=-==>0,∴x>z.∴x>z>y.故答案为D【点睛】(1)本题主要考查比较法比较大小,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.10、C【解析】分析:本题是一个分类计数问题,只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得到结果.详解:只用三种颜色涂色时,有种方法,用四种颜色涂色时,有种方法,根据分类计数原理得不同涂法的种数为120+360=480.故答案为:C.点睛:(1)本题主要考查计数原理,考查排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用的方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.11、A【解析】
根据参数方程与普通方程的互化,得直线的普通方程为,由极坐标与直角坐标的互化,得曲线普通方程为,再利用“平方差”法,即可求解.【详解】由直线(为参数),可得直线的普通方程为,由曲线,可得曲线普通方程为,设直线与椭圆的交点为,,则,,两式相减,可得.所以,即直线的斜率为,所以,故选A.【点睛】本题主要考查了参数方程与普通方程、极坐标方程与直角坐标方程的互化,以及中点弦问题的应用,其中解答中熟记互化公式,合理应用中点弦的“平方差”法是解答的关键,着重考查了推理与运算能力,属于基础题.12、B【解析】
根据题意,由排列数公式计算即可得答案.【详解】根据题意,属于排列问题,则一共有种不同的取法.即共有12个没有重复数字的两位数.故选B.【点睛】本题考查排列数公式的应用,注意区分排列、组合、放回式抽取和不放回抽取的不同.二、填空题:本题共4小题,每小题5分,共20分。13、5【解析】
先计算抛物线的准线,再计算点到准线的距离.【详解】抛物线,准线为:点到其焦点的距离为点到准线的距离为5故答案为5【点睛】本题考查了抛物线的性质,意在考查学生对于抛物线的理解.14、【解析】
随机变量的正态曲线关于对称,即0与关于对称,解出即可。【详解】根据题意有故填9【点睛】本题考查正态曲线的特点及曲线所表示的几何意义,属于基础题。15、【解析】
设此射手每次射击命中的概率为,由独立事件的概率与对立事件的概率可得,射击四次全都没有命中的概率为,解方程可求出的值.【详解】设此射手每次射击命中的概率为,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为.则,可解得,故答案为.【点睛】本题主要考查独立事件同时发生的概率公式以及对立事件的概率公式,意在考查灵活应用所学知识解答问题的能力,属于中档题.16、【解析】
根据方差公式计算方差,然后再得标准差.【详解】三个数的平均值为115,方差为,∴标准差为.故答案为:.【点睛】本题考查标准差,注意到方差是标准差的平方,因此可先计算方差.方差公式为:数据的方差为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)直线的方程为,的面积为.【解析】
求得圆的圆心和半径.(1)当三点均不重合时,根据圆的几何性质可知,是定点,所以的轨迹是以为直径的圆(除两点),根据圆的圆心和半径求得的轨迹方程.当三点有重合的情形时,的坐标满足上述求得的的轨迹方程.综上可得的轨迹方程.(2)根据圆的几何性质(垂径定理),求得直线的斜率,进而求得直线的方程.根据等腰三角形的几何性质求得的面积.【详解】圆,故圆心为,半径为.(1)当C,M,P三点均不重合时,∠CMP=90°,所以点M的轨迹是以线段PC为直径的圆(除去点P,C),线段中点为,,故的轨迹方程为(x-1)2+(y-3)2=2(x≠2,且y≠2或x≠0,且y≠4).当C,M,P三点中有重合的情形时,易求得点M的坐标为(2,2)或(0,4).综上可知,点M的轨迹是一个圆,轨迹方程为(x-1)2+(y-3)2=2.(2)由(1)可知点M的轨迹是以点N(1,3)为圆心,为半径的圆.由于|OP|=|OM|,故O在线段PM的垂直平分线上.又P在圆N上,从而ON⊥PM.因为ON的斜率为3,所以的斜率为,故的方程为,即.又易得|OM|=|OP|=,点O到的距离为,,所以△POM的面积为.【点睛】本小题主要考查动点轨迹方程的求法,考查圆的几何性质,考查等腰三角形面积的计算,考查化归与转化的数学思想方法,考查运算求解能力,属于中档题.18、(1);(2)详见解析.【解析】分析:(1)由条件可得的解集为,即的解集为,可得;(2)根据,展开后利用基本不等式可得结论.详解:(1)因为,所以等价于,由有解,得,且其解集为.又的解集为,故.(2)由(1)知,又,7分∴(或展开运用基本不等式)∴.点睛:本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).19、(1)有的把握认为招聘的、两个岗位与性别有关.(2)见解析.【解析】分析:(1)根据所给公式直接计算求解作答即可;(2)先分析此分布为超几何分布,然后确定X的取值可能,根据超几分布求解概率写分布列即可.详解:(1),故有的把握认为招聘的、两个岗位与性别有关.(2)的可能取值为0,1,2,,,.∴的分布列为012.点睛:考查独立性检验和离散型随机变量分分布列,属于基础题.20、(1)见解析;(2)直线与平面所成角的余弦值为.【解析】分析:(1)先根据线面平行判定定理得平面,平面.,再根据面面平行判定定理得结论,(2)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得平面的一个法向量,利用向量数量积求得向量夹角,最后根据线面角与向量夹角互余关系得结果.详解:(Ⅰ)因为,平面,平面,所以平面.同理可得,平面.又,所以平面平面.(Ⅱ)(向量法)以为坐标原点,所在的直线分别为轴,轴,轴建立如下图所示的空间直角坐标系,由已知得,点,,,.所以,.易证平面,则平面的一个法向量为.设直线与平面所成角为,则。则.即直线与平面所成角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21、(Ⅰ),.(Ⅱ)的面积.【解析】试题分析:(1)由余弦定理及已知条件得,a2+b2-ab=4,…………2分又因为△ABC的面积等于,所以abs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中医诊断学课件-中医诊断学绪论
- 2024年高考历史总复习考前冲刺攻略 第4讲 高考应试能力的培养
- 2016年高考语文试卷(新课标Ⅱ卷)(解析卷)
- 《寄小读者》导读课件
- 文明的历史足迹
- 2000年安徽高考语文真题及答案
- 网络社交消费行为研究-洞察分析
- 限售股监管政策效果评估-洞察分析
- 药品不良反应监测政策-洞察分析
- 水生生物多样性保护-第2篇-洞察分析
- 中华人民共和国残疾评定表
- 人教版美术五年级上册《第2课 色彩的和谐》说课稿2
- 2024年6月浙江省高考历史试卷(真题+答案)
- 住友(SWS)汽车连接器(Connectors)产品配套手册
- 办公楼室内装饰工程施工设计方案技术标范本
- 2023年香港华夏杯六年级竞赛初赛数学试卷
- 高中数学放缩法
- 上海市闵行区2024-2025学年八年级(上)期末物理试卷(解析版)
- 2024年国考行测真题-言语理解与表达真题及完整答案1套
- 人教版三年级上册数学期末测试卷可打印
- 医疗高级职称评审论文答辩
评论
0/150
提交评论