2023届西安市东仪中学数学高二第二学期期末联考试题含解析_第1页
2023届西安市东仪中学数学高二第二学期期末联考试题含解析_第2页
2023届西安市东仪中学数学高二第二学期期末联考试题含解析_第3页
2023届西安市东仪中学数学高二第二学期期末联考试题含解析_第4页
2023届西安市东仪中学数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,为边上一点,且,向量与向量共线,若,,,则()A.3 B. C.2 D.2.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数3.独立性检验中,假设:运动员受伤与不做热身运动没有关系.在上述假设成立的情况下,计算得的观测值.下列结论正确的是A.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动有关B.在犯错误的概率不超过0.01的前提下,认为运动员受伤与不做热身运动无关C.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动有关D.在犯错误的概率不超过0.005的前提下,认为运动员受伤与不做热身运动无关4.若复数的实部与虚部相等,其中是实数,则()A.0 B.1 C.2 D.5.将5件不同的奖品全部奖给3个学生,每人至少一件奖品,则不同的获奖情况种数是()A.150 B.210 C.240 D.3006.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A. B. C. D.7.已知复数,则()A.4 B.6 C.8 D.108.已知i为虚数单位,复数z满足,则复()A.1 B. C.i D.9.从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.10.今年全国高考,某校有3000人参加考试,其数学考试成绩(,试卷满分150分),统计结果显示数学考试成绩高于130分的人数为100,则该校此次数学考试成绩高于100分且低于130分的学生人数约为()A.1300 B.1350 C.1400 D.145011.是虚数单位,若,则的值是()A. B. C. D.12.对相关系数,下列说法正确的是()A.越大,线性相关程度越大B.越小,线性相关程度越大C.越大,线性相关程度越小,越接近0,线性相关程度越大D.且越接近1,线性相关程度越大,越接近0,线性相关程度越小二、填空题:本题共4小题,每小题5分,共20分。13.函数的单调递减区间是_________.14.若随机变量,则_______.15.已知的展开式中,的系数为,则常数的值为.16.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.要求老师必须站在正中间,甲同学不与老师相邻,则不同站法种数为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用数学归纳法证明:当时,能被7整除.18.(12分)已知函数.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)已知,且,求的值.19.(12分)已知函数.(1)求的最大值;(2)若恒成立,求的值;(3)在(2)的条件下,设在上的最小值为求证:.20.(12分)已知函数.(1)讨论函数在定义域内的极值点的个数;(2)若函数在处取得极值,且对任意,恒成立,求实数的取值范围;(3)当时,求证:.21.(12分)已知曲线的参数方程为(为参数,),直线经过且倾斜角为.(1)求曲线的普通方程、直线的参数方程.(2)直线与曲线交于A、B两点,求的值.22.(10分)已知展开式中的倒数第三项的系数为45,求:(1)含的项;(2)系数最大的项.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】取BC的中点E,则与向量共线,所以A、D、E三点共线,即中边上的中线与高线重合,则.因为,所以G为的重心,则所以本题选择B选项.2、A【解析】若f(x)=ax2+bx+c(c≠0)是偶函数,则,则是奇函数,选A.3、A【解析】

先找到的临界值,根据临界值表找到犯错误的概率,即对“运动员受伤与不做热身运动没有关系”可下结论。【详解】,因此,在犯错误的概率不超过的前提下,认为运动员受伤与不做热身运动有关,故选:A。【点睛】本题考查独立性检验,根据临界值表找出犯错误的概率是解这类问题的关键,考查运算求解能力,属于基础题。4、D【解析】分析:根据复数乘法运算法则化简复数,结合已知条件,求出的值,代入后求模即可得到答案.详解:复数的实部与虚部相等,又有,解得,.故选D.点睛:本题考查复数代数形式的乘法运算和复数模的求法,属于基础题.5、A【解析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有C53•A33=60种分法,分成2、2、1时,根据分组公式90种分法,所以共有60+90=150种分法,故选A.点睛:一般地,如果把不同的元素分配给几个不同对象,并且每个不同对象可接受的元素个数没有限制,那么实际上是先分组后排列的问题,即分组方案数乘以不同对象数的全排列数.6、C【解析】

根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=10,则其与该校学生人数之比为10÷100=0.1.故选C.【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.7、D【解析】

根据复数的模长公式进行计算即可.【详解】z=8+6i,则8﹣6i,则||10,故选:D.【点睛】本题主要考查复数的模长的计算,根据条件求出是解决本题的关键.8、C【解析】

利用两个复数代数形式的除法法则及虚数单位的幂运算性质,化简复数到最简形式.【详解】解:复数,故选:.【点睛】本题考查两个复数代数形式的乘除法,两个复数相除,分子和分母同时除以分母的共轭复数,属于基础题.9、D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为,3名女同学为,从以上5名同学中任选2人总共有共10种可能,选中的2人都是女同学的情况共有共三种可能则选中的2人都是女同学的概率为,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.10、C【解析】

根据正态分布的对称性计算,即【详解】100分是数学期望,由题意成绩高于130分的有100人,则低于70分的也有100人,70到130的总人数为3000-200=2800,因此成绩高于100分低于130分的人数为.故选C.【点睛】本题考查正态分布,解题关键是掌握正态分布曲线中的对称性,即若,则,.11、C【解析】

12、D【解析】

根据两个变量之间的相关系数r的基本特征,直接选出正确答案即可.【详解】用相关系数r可以衡量两个变量之间的相关关系的强弱,|r|≤1,r的绝对值越接近于1,表示两个变量的线性相关性越强,r的绝对值接近于0时,表示两个变量之间几乎不存在相关关系,故选D.【点睛】本题考查两个变量之间相关系数的基本概念应用问题,是基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出导函数,在上解不等式可得的单调减区间.【详解】,其中,令,则,故函数的单调减区间为,填.【点睛】一般地,若在区间上可导,且,则在上为单调减函数;反之,若在区间上可导且为减函数,则.注意求单调区间前先确定函数的定义域.14、10【解析】

根据题意可知,随机变量满足二项分布,根据公式,即可求出随机变量的方差,再利用公式即可求出。【详解】.故答案为。【点睛】本题主要考查满足二项分布的随机变量方差的求解,解题时,利用公式将求的问题转化为求的问题,根据两者之间的关系列出等式,进行相关计算。15、【解析】,所以由得,从而点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.16、.【解析】试题分析:老师必须站在正中间,则老师的位置是指定的;甲同学不与老师相邻,则甲同学站两端,故不同站法种数为:,故填:.考点:排列组合综合应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】

运用数学归纳法证明,考虑检验成立,再假设成立,证明时,注意变形,即可得证.【详解】证:①当时,,能被7整除;②假设时,能被7整除,那么当时,,由于能被7整除,能被7整除,可得能被7整除,即当时,能被7整除;综上可得当时,能被7整除.【点睛】本题主要考查数学归纳法,数学归纳法的基本形式:设是关于自然数的命题,若成立(奠基);假设成立,可以推出成立(归纳),则对一切大于等于的自然数都成立.属于基础题.18、(Ⅰ),;(Ⅱ).【解析】分析:(1)根据两角和差公式将表达式化一,进而得到周期和单调区间;(2),通过配凑角得到,展开求值即可.详解:(Ⅰ),,令,,函数的单调递减区间为.(Ⅱ),,,,则,.点睛:这个题目考查了三角函数的化一求值,两角和差公式的化简,配凑角的应用;三角函数的求值化简,常用的还有三姐妹的应用,一般,,这三者我们成为三姐妹,结合,可以知一求三.19、(1);(2)2;(3)证明见解析.【解析】

(1),判断函数的单调性即可求解最大值;(2)要使成立必须,,判断单调性求解即可得解(3),得,令判断其单调性进而求得,得,再求的范围进而得证【详解】(1),由得;得;所以在上单调递增,在上单调递减.故,即;(2)要使成立必须.因为,所以当时,;当时,.所以在上单调递减,在上单调递增.又,所以满足条件的只有2,即.(3)由(2)知,所以.令,则,是上的增函数;又,所以存在满足,即,且当时,;当,所以在上单调递减;在上单调递增.所以,即.所以,即.【点睛】本题考查了利用导数研究函数的单调性及最值,考查了零点存在定理和数学转化思想,在(3)的证明过程中,利用零点存在定理转化是难点属中档题.20、(1)答案见解析;(2);(3)证明见解析.【解析】试题分析:(1)由题意可得,分类讨论有:当时,函数没有极值点,当时,函数有一个极值点.(2)由题意可得,原问题等价于恒成立,讨论函数的性质可得实数的取值范围是;(3)原问题等价于,继而证明函数在区间内单调递增即可.试题解析:(1),当时,在上恒成立,函数在单调递减,∴在上没有极值点;当时,得,得,∴在上递减,在上递增,即在处有极小值.∴当时在上没有极值点,当时,在上有一个极值点.(2)∵函数在处取得极值,∴,∴,令,,可得在上递减,在上递增,∴,即.(3)证明:,令,则只要证明在上单调递增,又∵,显然函数在上单调递增.∴,即,∴在上单调递增,即,∴当时,有.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.21、(1);(为参数,)(2)【解析】

(1)利用,消去参数即可求得曲线的普通方程,根据直线参数方程的定义即可求得直线的参数方程;(2)利用直线参数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论