版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若m,n没有公共点,则B.若,,则C.若,则D.若,则2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是()A. B.C. D.3.已知,则的值是A. B. C. D.4.设是偶函数的导函数,当时,,则不等式的解集为()A. B.C. D.5.在中,,,,点满足,则等于()A.10 B.9 C.8 D.76.已知某几何体的三视图如图所示,则该几何体的外接球的表面积为()A. B. C. D.7.通过随机询问111名不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
41
21
31
不爱好
21
21
51
总计
31
51
111
由附表:
1.151
1.111
1.111
2.841
3.325
11.828
参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过1.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过1.1%的前提下,认为“爱好该项运动与性别无关”8.函数在上的图象大致是()A. B.C. D.9.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件10.已知盒中装有大小形状完全相同的3个红球、2个白球、5个黑球.甲每次从中任取一球且不放回,则在他第一次拿到的是红球的前提下,第二次拿到白球的概率为()A. B. C. D.11.已知i为虚数单位,复数z满足(1-i)·z=2i,是复数z的共轭复数,则下列关于复数z的说法正确的是()A.z=1-i B.C. D.复数z在复平面内表示的点在第四象限12.用反证法证明命题“若,则方程至少有一个实根”时,应假设()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根二、填空题:本题共4小题,每小题5分,共20分。13.椭圆绕轴旋转一周所得的旋转体的体积为___________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答).15.已知向量,,且与共线,则的值为__.16.若,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,有一块半椭圆形钢板,其长半轴长为,短半轴长为,计划将此钢板切割成等腰梯形的形状,下底是半椭圆的短轴,上底的端点在椭圆上,梯形面积为.(1)当,时,求梯形的周长(精确到);(2)记,求面积以为自变量的函数解析式,并写出其定义域.18.(12分)已知1.(1)求tan()的值;(1)求3sin1θ+4cos1θ的值.19.(12分)“过桥米线”是云南滇南地区特有的一种小吃.在云南某地区“过桥米线”有三种品牌的店,其中品牌店家,品牌店家,品牌店家.(Ⅰ)为了加强对食品卫生的监督管理工作,该地区的食品安全管理局决定按品牌对这家“过桥米线”专营店采用分层抽样的方式进行抽样调查,被调查的店共有家,则品牌的店各应抽取多少家?(Ⅱ)为了吸引顾客,所有品牌店举办优惠活动:在一个盒子中装有形状、大小相同的个白球和个红球.顾客可以一次性从盒中抽取个球,若是个红球则打六折(按原价的付费),个红球个白球打八折,个红球个白球则打九折,个白球则打九六折.小张在该店点了价值元的食品,并参与了抽奖活动,设他实际需要支付的费用为,求的分布列与数学期望.20.(12分)已知函数,若定义域内存在实数x,满足,则称为“局部奇函数.(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由(2)设是定义在上的“局部奇函数”,求实数m的取值范围.21.(12分)设函数,.(1)求函数的单调递增区间;(2)若函数与在区间内恰有两个交点,求实数的取值范围.22.(10分)已知,函数.(1)讨论函数在上的单调性;(2)若在内有解,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由空间中点、线、面位置关系的判定与性质依次对选项进行判断,由此得到答案。【详解】两条直线没有公共点有平行和异面两种情形,故A,B错;对于C,还存在的情形:由线面垂直的性质可得D对,故选D.【点睛】本题考查学生对空间中点、线、面的位置关系的理解与掌握,重点考查学生的空间想象能力,属于中档题。2、A【解析】
构造函数,首先判断函数的奇偶性,利用可判断时函数的单调性,结合函数图象列不等式组可得结果.【详解】设,则的导数为,因为时,,即成立,所以当时,恒大于零,当时,函数为增函数,又,函数为定义域上的偶函数,当时,函数为减函数,又函数的图象性质类似如图,数形结合可得,不等式,或,可得或,使得成立的的取值范围是故选:A.【点睛】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.联系已知条件和结论,构造辅助函数是高中数学中一种常用的方法,解题中若遇到有关不等式、方程及最值之类问题,设法建立起目标函数,并确定变量的限制条件,通过研究函数的单调性、最值等问题,常可使问题变得明了,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.3、D【解析】,,又,故选D.4、B【解析】
设,计算,变换得到,根据函数的单调性和奇偶性得到,解得答案.【详解】由题意,得,进而得到,令,则,,.由,得,即.当时,,在上是增函数.函数是偶函数,也是偶函数,且在上是减函数,,解得,又,即,.故选:.【点睛】本题考查了利用函数的奇偶性和单调性解不等式,构造函数,确定其单调性和奇偶性是解题的关键.5、D【解析】
利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.6、D【解析】由题设中提供的三视图中的图形信息与数据信息可知该几何体是一个底面是边长分别为3,3,4的等腰三角形,高是4的三棱锥,如图,将其拓展成三棱柱,由于底面三角形是等腰三角形,所以顶角的余弦为,则,底面三角形的外接圆的半径,则三棱锥的外接球的半径,其表面积,应选答案D。7、A【解析】
由,而,故由独立性检验的意义可知选A8、A【解析】对函数进行求导:,由可得:,即函数在区间上是增函数,在区间和区间上是减函数,观察所给选项,只有A选项符合题意.本题选择A选项.9、A【解析】
由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【点睛】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.10、D【解析】
设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,分别计算出,的值,由条件概率公式可得,可得答案.【详解】解:设“第一次拿到的是红球”为事件A,“第二次拿到白球”为事件B,可得:,,则所求事件的概率为:,故选:D.【点睛】本题主要考查条件概率与独立事件的计算,属于条件概率的计算公式是解题的关键.11、C【解析】
把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案.【详解】复数在复平面内表示的点在第二象限,故选C.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.12、A【解析】分析:直接利用命题的否定写出假设即可,至少的反面是一个都没有。详解:用反证法证明命题“若,则方程至少有一个实根”时,要做的假设是方程没有实根.故选:A.点晴:本题主要考察反证法,注意反证法证明问题时,反设实际是命题的否定二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
利用定积分在几何中的应用解答;所求为计算可得.【详解】解:由,得,将椭圆绕轴旋转一周所得的旋转体的体积为故答案为:【点睛】本题考查了定积分的应用;将旋转得到几何体的体积为,属于基础题.14、60【解析】试题分析:当一,二,三等奖被三个不同的人获得,共有种不同的方法,当一,二,三等奖被两个不同的人获得,即有一个人获得其中的两个奖,共有,所以获奖的不同情况有种方法,故填:60.考点:排列组合【方法点睛】本题主要考察了排列组合和分类计数原理,属于基础题型,重点是分析不同的获奖情况包含哪些情况,其中一,二,三等奖看成三个不同的元素,剩下的5张无奖奖券看成相同元素,那8张奖券平均分给4人,每人2张,就可分为三张奖券被3人获得,或是被2人获得的两种情况,如果是被3人获得,那这4组奖券就可看成4个不同的元素的全排列,如何2人获得,3张奖券分为2组,从4人挑2人排列,最后方法相加.15、2【解析】
先求得,然后根据两个向量共线列方程,解方程求得的值,进而求得的值.【详解】依题意,由于与共线,故,解得,故.【点睛】本小题主要考查平面向量减法的坐标运算,考查两个平面向量平行的坐标表示,属于基础题.16、【解析】
利用二倍角公式直接计算得到答案.【详解】.【点睛】本题考查了三角恒等变换,意在考查学生的计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)周长是;(2),定义域.【解析】分析:(1)以下底所在直线为轴,等腰梯形所在的对称轴为轴,建立直角坐标系,可得椭圆方程为,由题,,则代入椭圆方程得,可求,由此可求求梯形的周长.(2)由题可得,,由此可求,进而得到定义域.详解:(1)以下底所在直线为轴,等腰梯形所在的对称轴为轴,建立直角坐标系,可得椭圆方程为,,,∴代入椭圆方程得,∴,所以梯形的周长是;(2)得,∴,,定义域.点睛:本题考查了函数模型的应用问题,也考查了求函数定义域的问题,是综合性题目.18、(1);(1).【解析】
(1)利用齐次式求得tanθ,再利用二倍角求得tan1θ,进而利用两角差的正切求解即可;(1)利用同角三角函数的平方关系结合齐次式求解即可【详解】(1)∵1,∴tanθ,∴tan1θ.∴tan().(1)由(1)知,tanθ,∴3sin1θ+4cos1θ=6sinθcosθ+4(cos1θ–sin1θ).【点睛】本题考查同角三角函数的基本关系,考查两角差的正切,二倍角公式,熟记公式是关键,是中档题19、(Ⅰ)品牌店家,应抽查品牌店家;(Ⅱ)分布列见解析,【解析】
(1)根据分层抽样每层按比例分配,即可求解;(2)求出随机变量的可能取值,并求出相应的概率,即可得到分布列,进而根据期望公式求解.【详解】(Ⅰ)由题意得,应抽查品牌店家,应抽查品牌店家;(Ⅱ)离散型随机变量的可能取值为.于是,,,.的分布列如下60809096所以【点睛】本题考查分层抽样、离散型随机变量的分布列和期望,求出随机变量的概率是解题关键,属于基础题.20、(1)答案见解析;(2)【解析】试题分析:(1)本题实质就是解方程,如果这个方程有实数解,就说明是“局部奇函数”,如果这个方程无实数解,就说明不是“局部奇函数”,易知有实数解,因此答案是肯定的;(2)已经明确是“局部奇函数”,也就是说方程一定有实数解,问题也就变成方程在上有解,求参数的取值范围,又方程可变形为,因此求的取值范围,就相当于求函数的值域,用换元法(设),再借助于函数的单调性就可求出.试题解析:(1)为“局部奇函数”等价于关于的方程有解.即(3分)有解为“局部奇函数”.(5分)(2)当时,可转化为(8分)因为的定义域为,所以方程在上有解,令,则因为在上递减,在上递增,(11分)(12分)即(14分)考点:新定义概念,方程有解求参数取值范围问题.21、(1);(2).【解析】分析:(1)求函数的导数,解便得增区间.(2)要使函数与在区间内恰有两个交点,也就是让函数在[1,3]内有两个零点,令,下面要做的就是考查在区间内最值情况,若有最大值,则限制最大值大于0,然后两个端点值都小于0,若有最小值,情况恰好相反.详解:(1),∵,时,,所以函数的单调递增区间是.(2)令,则,∴时,,时,,∴是的极大值,也是在上的最大值.∵函数与在区间内恰有两个交点,∴函数在区间内有两个零点,则有,,.所以有.解得,所以的取值范围是.点睛:利用导数求函数的单调区间,这个不难掌握,注意做第二题,,.,这几个限制条件的得出,并掌握做这类题的方法..22、(1)见解析;(2).【解析】
(1)计算函数的导函数,得到对应方程的根为,讨论三种情况得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年版矿产资源探矿权出让合同范本(含矿产资源勘查风险分担)3篇
- 2025年度内蒙古草原生态旅游承包经营合同3篇
- 2025年度音乐教育项目艺人授课合同3篇
- 二零二五年度文化旅游综合体租赁合同书3篇
- 年度单抗导向药物战略市场规划报告
- 二零二五年度东易日盛跑路事件客户赔偿与调解合同3篇
- 2024瑜伽馆瑜伽教练劳动合同范本及教练与学员沟通规范3篇
- 二零二五版“520”荔枝电商法治讲堂讲师聘用合同3篇
- 2024版建筑水电分包合同范本
- 二零二五年度房产评估咨询合同样本4篇
- 第14课《叶圣陶先生二三事》导学案 统编版语文七年级下册
- 汽车配件购销合同范文
- 贵州省2024年中考英语真题(含答案)
- 施工项目平移合同范本
- 北师大版八年级上册数学期中综合测试卷(含答案解析)
- 幼儿园创意美劳培训
- 同济大学第四版线性代数课后习题答案
- 医疗领域人工智能技术应用的伦理与法规
- 工地春节停工复工计划安排
- 美容面部皮肤知识课件
- 胰岛素注射的护理
评论
0/150
提交评论