版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线l1:与直线l2:垂直,则的值为()A.﹣2 B. C.2 D.2.在平行四边形中,为线段的中点,若,则()A. B. C. D.3.已知直三棱柱中,底面为等腰直角三角形,,,,点在上,且,则异面直线与所成角为()A. B. C. D.4.甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有()A.36种 B.48种 C.96种 D.192种5.()A. B. C.2 D.16.已知双曲线的焦距为,其渐近线方程为,则焦点到渐近线的距离为()A.1 B. C.2 D.7.唐代诗人杜牧的七绝唐诗中的两句诗为“今来海上升高望,不到蓬莱不成仙。”其中后一句“成仙”是“到蓬莱”的()A.充分非必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件8.在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数,).若与有且只有一个公共点,则实数的取值范围是()A. B. C. D.或9.已知,则()A.0.6 B.3.6 C.2.16 D.0.21610.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则PBA.13 B.49 C.511.已知i是虚数单位,若复数z满足,则=A.-2i B.2i C.-2 D.212.如图是“向量的线性运算”知识结构,如果要加入“三角形法则”和“平行四边形法则”,应该放在()A.“向量的加减法”中“运算法则”的下位B.“向量的加减法”中“运算律”的下位C.“向量的数乘”中“运算法则”的下位D.“向量的数乘”中“运算律”的下位二、填空题:本题共4小题,每小题5分,共20分。13.函数的值域为____________.14.一个总体有200个个体,利用系统抽样的方法抽取一个容量为20的样本,则分组间隔为___________.15.已知函数,,则的最小值是__________16.函数y=3sin(2x+π4三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,且的解集为.(1)求的值;(2)若,且,求证:.18.(12分)已知为正实数,函数.(1)求函数的最大值;(2)若函数的最大值是,求的最小值.19.(12分)已知集合,.(1)若,,求实数的取值范围;(2)若,且,求实数的取值范围.20.(12分)已知椭圆(a>b>0)经过点,且离心率为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知A(0,b),B(a,0),点P是椭圆C上位于第三象限的动点,直线AP、BP分别将x轴、y轴于点M、N,求证:|AN|•|BM|为定值.21.(12分)已知函数在处取得极大值为.(1)求的值;(2)求曲线在处的切线方程.22.(10分)已知点是椭圆的一个焦点,点在椭圆上.(Ⅰ)求椭圆的方程;(Ⅱ)若直线与椭圆交于不同的两点,且(为坐标原点),求直线斜率的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据两直线垂直的条件,得到,即可求解,得到答案.【详解】由题意,直线l1:与直线l2:垂直,则满足,解得,故选A.【点睛】本题主要考查了两条直线的位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.2、B【解析】分析:利用向量的平行四边形法则,向量共线定理即可得出.详解:,,故选:B.点睛:(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.3、C【解析】
根据题意将直三棱柱补成长方体,由,然后再过点作直线的平行线,从而可得异面直线与所成角.【详解】由条件将直三棱柱补成长方体,如图.由条件,设点为的中点,连接.则,所以(或其补角)为异面直线与所成角.在中,,所以为等边三角形,所以故选:C【点睛】本题考查异面直线所成角,要注意补形法的应用,属于中档题.4、C【解析】试题分析:设4门课程分别为1,2,3,4,甲选修2门,可有1,2;1,3;1,4;2,3;2,4;3,4共6种情况,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4种情况,∴不同的选修方案共有6×4×4=96种,故选C.考点:分步计数原理点评:本题需注意方案不分次序,即a,b和b,a是同一种方案,用列举法找到相应的组合即可.5、A【解析】
根据定积分表示直线与曲线围成的图像面积,即可求出结果.【详解】因为定积分表示直线与曲线围成的图像面积,又表示圆的一半,其中;因此定积分表示圆的,其中,故.故选A【点睛】本题主要考查定积分的几何意义,熟记定积分几何意义即可,属于基础题型.6、A【解析】
首先根据双曲线的焦距得到,再求焦点到渐近线的距离即可.【详解】由题知:,,.到直线的距离.故选:A【点睛】本题主要考查双曲线的几何性质,同时考查了点到直线的距离公式,属于简单题.7、A【解析】
根据命题的“真、假”,条件与结论的关系即可得出选项。【详解】不到蓬莱不成仙,成仙到蓬莱,“成仙”是到“到蓬莱”的充分条件,但“到蓬莱”是否“成仙”不确定,因此“成仙”是“到蓬莱”的充分非必要条件。故选:A【点睛】充分、必要条件有三种判断方法:1、定义法:直接判断“若则”和“若则”的真假。2、等假法:利用原命题与逆否命题的关系判断。3、若,则A是B的充分条件或B是A的必要条件;若,则A是B的充要条件。8、D【解析】
先把曲线,的极坐标方程和参数方程转化为直角坐标方程和一般方程,若与有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a的范围即得解.【详解】因为曲线的极坐标方程为即故曲线的直角坐标方程为:.消去参数可得曲线的一般方程为:,由于,故如图所示,若与有且只有一个公共点,直线与半圆相切,或者截距当直线与半圆相切时由于为上半圆,故综上:实数的取值范围是或故选:D【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.9、B【解析】
根据二项分布的期望的计算公式求解即可得到结果.【详解】∵,∴.故选B.【点睛】本题考查二项分布的期望,解题的关键是熟记此类分布期望的计算公式,属于基础题.10、D【解析】由题意得P(B|A)=P(AB)P(A),两次的点数均为奇数且和小于7的情况有(1,1),(1,3),(3,1),(1,5),(5,1)(3,3),则P(AB)=611、A【解析】由得,即,所以,故选A.【名师点睛】复数代数形式的加减乘除运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式乘法法则,除法运算则先将除式写成分式的形式,再将分母实数化.注意下面结论的灵活运用:(1)(1±i)2=±2i;(2)=i,=-i.12、A【解析】
由“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,由此易得出正确选项.【详解】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位.故选A.【点睛】本题考查知识结构图,向量的加减法的运算法则,知识结构图比较直观地描述了知识之间的关联,解题的关键是理解知识结构图的作用及知识之间的上下位关系.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
对的范围分类,即可求得:当时,函数值域为:,当时,函数值域为:,再求它们的并集即可。【详解】当时,,其值域为:当时,,其值域为:所以函数的值域为:【点睛】本题主要考查了分段函数的值域及分类思想,还考查了指数函数及对数函数的性质,考查计算能力及转化能力,属于中档题。14、10【解析】
系统抽样的抽样间隔为200÷20=10,可得答案.【详解】利用系统抽样的方法抽取一个容量为20的样本.所以应该将总体编号后分成20组,每组200÷20=10个所以分组间隔为10.故答案为:10.【点睛】本题考查系统抽样的定义和方法,考查系统抽样的抽样间隔,属于基础题.15、【解析】
计算导数,然后构造函数,利用导数研究该函数的单调性进而判断原函数的单调性,可得结果.【详解】由题可知:令,则由,所以所以,则在递减所以,又则所以函数在递增所以所以故答案为:【点睛】本题考查函数在区间的最值,难点在于构造函数二次求导,注意细节,需要通过判断函数在区间的单调情况才能代值计算,考查对问题的分析能力,属中档题.16、π【解析】
∵函数y=sinx的周期为∴函数y=3sin(2x+π故答案为π.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解析】分析:(1)由条件可得的解集为,即的解集为,可得;(2)根据,展开后利用基本不等式可得结论.详解:(1)因为,所以等价于,由有解,得,且其解集为.又的解集为,故.(2)由(1)知,又,7分∴(或展开运用基本不等式)∴.点睛:本题主要考查利用基本不等式求最值,属于中档题.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).18、(1).(2)【解析】
(1)利用绝对值三角不等式即可求得结果;(2)由(1)可得,利用柯西不等式可求得结果.【详解】(1)由绝对值三角不等式得:(当且仅当时取等号).为正实数,,即(当且仅当时取等号),的最大值为.(2)由(1)知:,即.,,(当且仅当,即,,时取等号).的最小值为.【点睛】本题考查利用绝对值三角不等式和柯西不等式求解最值的问题;利用柯西不等式的关键是能够根据已知等式的形式,配凑出符合柯西不等式形式的式子,属于常考题型.19、(1);(2)【解析】
结合指数函数和对数函数性质可分别求得集合和集合;(1)由交集定义得到,分别在和两种情况下构造不等式求得结果;(2)由并集定义得到,根据交集结果可构造不等式求得结果.【详解】(1)当时,,解得:,满足当时,,解得:综上所述:实数的取值范围为(2),解得:实数的取值范围为【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.20、(1)+y2=1.(2)见解析.【解析】
(1)由题意可得:,,a2=b2+c2,联立解得:a,b.即可得出椭圆C的方程.(2)设P(x0,y0),(x0<0,y0<0)A(2,0),B(0,1)..可得直线BP,AP的方程分别为:y=x+1,y=(x-2),可得:M(,0),N(0,).可得|AM|•|BN|为定值.【详解】解:(1)由题意可得:+=1,=,a2=b2+c2,联立解得:a=2,b=1.∴椭圆C的方程为:+y2=1.(2)证明:设P(x0,y0),(x0<0,y0<0)A(2,0),B(0,1).+2=2.可得直线BP,AP的方程分别为:y=x+1,y=(x-2),可得:M(,0),N(0,).∴|AM|•|BN|=(2-)(1-)=2--+==2为定值.【点睛】本题考查了椭圆的标准方程及其性质、斜率计算公式、直线方程,考查了推理能力与计算能力,属于中档题.21、(1);(2).【解析】分析:(1)由题意得到关于a,b的方程组,求解方程组可知;(2)由(1)得,据此可得切线方程为.详解:(1),依题意得,即,解得,经检验,符合题意.(2)由(1)得,∴.,,∴曲线在处的切线方程为,即.点睛:导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.22、(1)(2)【解析】
(1)由题可知,椭圆的另一个焦点为,利用椭圆的定义,求得,再理由椭圆中,求得的值,即可得到椭圆的方程;(2)设直线的方程为,联立方程组,利用根与系数的关系,求得,在由,进而可求解斜率的取值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南卫生健康职业学院《演讲与辩论》2023-2024学年第一学期期末试卷
- 2025年度私人车辆转让及绿色环保认证合同3篇
- 2025版金融风险评估与管理服务协议2篇
- 海南师范大学《欧洲现代主义建筑选读》2023-2024学年第一学期期末试卷
- 二零二五年度影视作品制作担保合同3篇
- 二零二五年度拆迁项目综合评估居间代理服务协议书模板2篇
- 2025年度版权购买合同属性为图书出版权2篇
- 二零二五年度智能办公家具销售与服务协议3篇
- 2025年出口贸易融资续约合同范本3篇
- 幼儿园财务管理制度细则模版(2篇)
- 工程临时用工确认单
- 简约清新大气餐饮行业企业介绍模板课件
- 氮气窒息事故案例经验分享
- 某公司年度生产经营计划书
- 厂房租赁合同标准版(通用10篇)
- 《教育心理学》教材
- 易制毒化学品安全管理制度(3篇)
- 建设单位业主方工程项目管理流程图
- 断裂力学——2Griffith理论(1)
- 风电场岗位任职资格考试题库大全-下(填空题2-2)
- 安全施工专项方案报审表
评论
0/150
提交评论