版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列不等式成立的是()A. B. C. D.2.下列选项错误的是()A.“”是“”的充分不必要条件.B.命题“若,则”的逆否命题是“若,则”C.若命题“”,则“”.D.若“”为真命题,则均为真命题.3.一个几何体的三视图如图所示,则该几何体的体积为()A. B.8 C.6 D.4.已知复数z满足(i是虚数单位),若在复平面内复数z对应的点为Z,则点Z的轨迹为()A.双曲线的一支 B.双曲线 C.一条射线 D.两条射线5.已知函数若关于的方程有7个不等实根,则实数的取值范围是()A. B. C. D.6.已知为两个不同平面,为直线且,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知集合,集合,则()A. B. C. D.8.名学生在一次数学考试中的成绩分别为如,,,…,,要研究这名学生成绩的平均波动情况,则最能说明问题的是()A.频率 B.平均数 C.独立性检验 D.方差9.在平面内,点x0,y0到直线Ax+By+C=0的距离公式为d=Ax0A.3 B.6 C.67710.某公司在年的收入与支出情况如下表所示:收入(亿元)支出y(亿元)根据表中数据可得回归直线方程为,依此名计,如果年该公司的收入为亿元时,它的支出为()A.亿元 B.亿元 C.亿元 D.亿元11.若点为圆C:的弦MN的中点,则弦MN所在直线的方程为()A. B. C. D.12.若,则()A. B. C.或 D.或二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)=_____.14.设函数,则满足的的取值范是____________.15.设,函数f
是偶函数,若曲线
的一条切线的斜率是,则切点的横坐标为______.16.已知函数,若对任意,恒成立,则实数的取值范围是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(1)求函数的解析式;(2)解关于的不等式.18.(12分)设函数的导函数为.若不等式对任意实数x恒成立,则称函数是“超导函数”.(1)请举一个“超导函数”的例子,并加以证明;(2)若函数与都是“超导函数”,且其中一个在R上单调递增,另一个在R上单调递减,求证:函数是“超导函数”;(3)若函数是“超导函数”且方程无实根,(e为自然对数的底数),判断方程的实数根的个数并说明理由.19.(12分)已知,其前项和为.(1)计算;(2)猜想的表达式,并用数学归纳法进行证明.20.(12分)设数列an的前项为Sn,点n,Snn,n∈(1)求数列an(2)设bn=3an⋅an+121.(12分)已知函数的图象过点.(1)求的解析式及单调区间;(2)求在上的最小值.22.(10分)已知,,.求与的夹角;若,,,,且与交于点,求.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用指数函数与对数函数的单调性,即可得到判定,得出答案.【详解】由题意,指数函数时,函数是增函数,所以不正确,是正确的,又由对数函数是增函数,所以不正确;对数函数是减函数,所以不正确,故选B.【点睛】本题主要考查了指数函数以及对数函数的单调性的应用,其中熟记指数函数与对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】
根据充分条件和必要条件的定义,逆否命题的定义、含有量词的命题的否定以及复合命题的真假关系依次对选项进行判断即可得到答案。【详解】对于A,由可得或,即“”是“”的充分不必要条件,故A正确;对于B,根据逆否命题的定义可知命题“若,则”的逆否命题是“若,则”,故B正确;对于C,由全称命题的否定是存在命题,可知若命题“”,则“”,故C正确;对于D,根据复合命题的真值表可知若“”为真命题,则至少一个为真命题,故D错误。故答案选D【点睛】本题考查命题真假的判定,涉及到逆否命题的定义、充分条件与必要条件的判断、含有量词的命题的否定以及复合命题的真假关系,属于基础题。3、A【解析】分析:由三视图可知,该几何体是一个四棱锥,它的底面是一个长宽分别为的矩形,棱锥的高为,利用棱锥的体积公式可得结果.详解:根据三视图知:由三视图可知,该几何体是一个四棱锥,它的底面是个长宽分别为的矩形,棱锥的高为,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.4、C【解析】分析:利用两个复数的差的绝对值表示两个复数对应点之间的距离,来分析已知等式的意义.详解:∵复数z满足(i是虚数单位),在复平面内复数z对应的点为Z,则点Z到点(1,2)的距离减去到点(﹣2,﹣1)的距离之差等于3,而点(1,2)与点(﹣2,﹣1)之间的距离为3,故点Z的轨迹是以点(1,2)为端点的经过点(﹣2,﹣1)的一条射线.故选C.点睛:本题考查两个复数的差的绝对值的意义,两个复数的差的绝对值表示两个复数对应点之间的距离.5、C【解析】分析:画出函数的图象,利用函数的图象,判断f(x)的范围,然后利用二次函数的性质求解a的范围.详解:函数的图象如图:关于f2(x)+(a﹣1)f(x)﹣a=0有7个不等的实数根,即[f(x)+a][f(x)﹣1]=0有7个不等的实数根,f(x)=1有3个不等的实数根,∴f(x)=﹣a必须有4个不相等的实数根,由函数f(x)图象可知﹣a∈(1,2),∴a∈(﹣2,﹣1).故选:C.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.6、B【解析】
当时,若,则推不出;反之可得,根据充分条件和必要条件的判断方法,判断即可得到答案.【详解】当时,若且,则推不出,故充分性不成立;当时,可过直线作平面与平面交于,根据线面平行的性质定理可得,又,所以,又,所以,故必要性成立,所以“”是“”的必要不充分条件.故选:B.【点睛】本题主要考查充分条件和必要条件的判定,关键是掌握充分条件和必要条件的定义,判断是的什么条件,需要从两方面分析:一是由条件能否推得条件;二是由条件能否推得条件.7、A【解析】
直接求交集得到答案.【详解】集合,集合,则.故选:.【点睛】本题考查了交集的运算,属于简单题.8、D【解析】分析:直接根据频率、平均数、独立性检验、方差的基本定义判断即可.详解:因为频率表示可能性大小,错;平均数表示平均水平的高低,错;独立性检验主要指两个变量相关的可能性大小,错;方差表示分散与集中程度以及波动性的大小,对,故选D.点睛:本题主要考查频率、平均数、独立性检验、方差的基本定义,属于简单题.9、B【解析】
类比得到在空间,点x0,y【详解】类比得到在空间,点x0,y0,所以点2,1,2到平面x+y+2z-1=0的距离为d=2+1+4-1故选:B【点睛】本题主要考查类比推理,意在考查学生对该知识的理解掌握水平,属于基础题.10、B【解析】,,代入回归直线方程,,解得:,所以回归直线方程为:,当时,支出为亿元,故选B.11、A【解析】
根据题意,先求出直线PC的斜率,根据MN与PC垂直求出MN的斜率,由点斜式,即可求出结果.【详解】由题意知,圆心的坐标为,则,由于MN与PC垂直,故MN的斜率,故弦MN所在的直线方程为,即.故选A【点睛】本题主要考查求弦所在直线方程,熟记直线的点斜式方程即可,属于常考题型.12、B【解析】
根据组合数的公式,列出方程,求出的值即可.【详解】∵,∴,或,解得(不合题意,舍去),或;∴的值是1.故选:B.【点睛】本题考查了组合数公式的应用问题,是基础题目.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:根据所给的随机变量的分布列,写出各个变量对应的概率,根据分布列中各个概率之和是1,把所有的概率表示出来相加等于1,得到关于a的方程,解方程求得a的值,最后求出P(X=2).详解:∵P(X=i)=(i=1,2,3),∴a=3,∴P(X=2)=.故答案选:C.点睛:(1)本题主要考查分布列的性质,意在考查学生对这些知识的掌握水平.(2)分布列的两个性质:①Pi≥0,i=1,2,…;②P1+P2+…=1.14、.【解析】分析:画出函数的图象,利用函数的单调性列出不等式转化求解即可.详解:函数的图象如图:满足,可得或,解得.故答案为:.点睛:本题考查分段函数的应用,函数的单调性以及不等式的解法,考查计算能力.15、【解析】
先根据f(x)为偶函数求得,再由,解得.【详解】由题意可得f(x)=f(-x),即,变形为为任意x时都成立,所以,所以,设切点为,,由于是R上的单调递增函数,且.所以.填.【点睛】本题考查函数的奇偶性与单调性及由曲线的斜率求切点横坐标.16、【解析】
先将对任意,恒成立,转化为,利用基本不等式和函数单调性,分别研究对任意恒成立,和对任意恒成立,即可求出结果.【详解】等价于,即,①先研究对任意恒成立,即对任意恒成立,∵,当且仅当“”时取等号,∴;②再研究对任意恒成立,即对任意恒成立,∵函数在上单调递增,∴,∴;综上,实数的取值范围是.故答案为:.【点睛】本题主要考查不等式恒成立求参数的范围,熟记基本不等式以及函数单调性即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)令,得,求出的范围,得出的范围,再将代入题中函数解析式即可得出函数的解析式与定义域;(2)将所求不等式转化为,然后解出该不等式组即可得出答案.【详解】(1)令,则,,由题意知,即,则.所以,故.(2)由,得.由,得,因为,所以,由,得,即,,解得或.又,,所以或.故不等式的解集为.【点睛】本题第(1)问考查函数解析式的求解,对于简单复合函数解析式的求解,常用换元法,但要注意新元的取值范围作为定义域,第(2)问考查对数不等式的解法,一般要转化为同底数对数来处理,借助对数函数的单调性求解,同时也要注意真数大于零这个隐含条件.18、(1)见解析.(2)见解析.(3)见解析.【解析】分析:(1)根据定义举任何常数都可以;(2)∵,∴,即证-在R上成立即可;(3)构造函数,因为是“超导函数”,∴对任意实数恒成立,而方程无实根,故恒成立,所以在上单调递减,故方程等价于,即,设,分析函数单调性结合零点定理即可得出结论.详解:(1)举例:函数是“超导函数”,因为,,满足对任意实数恒成立,故是“超导函数”.注:答案不唯一,必须有证明过程才能给分,无证明过程的不给分.(2)∵,∴,∴因为函数与都是“超导函数”,所以不等式与对任意实数都恒成立,故,,①而与一个在上单调递增,另一个在上单调递减,故,②由①②得对任意实数都恒成立,所以函数是“超导函数”.(3)∵,所以方程可化为,设函数,,则原方程即为,③因为是“超导函数”,∴对任意实数恒成立,而方程无实根,故恒成立,所以在上单调递减,故方程③等价于,即,设,,则在上恒成立,故在上单调递增,而,,且函数的图象在上连续不断,故在上有且仅有一个零点,从而原方程有且仅有唯一实数根.点睛:考查函数的新定义,首先要读懂新定义,将新定义的知识与所学导函数的知识相联系是解题关键,本题的难点在于能否将新定义的语言转化为自己所熟悉的函数语言进行等价研究问题是解题关键,属于压轴题.19、(1);(2),证明见解析.【解析】
(1)由题可得前4项,依次求和即可得到答案;(2)由(1)得到前四项和的规律可猜想,由数学归纳法,即可做出证明,得到结论。【详解】(1)计算,.(2)猜想.证明:①当时,左边,右边,猜想成立.②假设猜想成立,即成立,那么当时,,而,故当时,猜想也成立.由①②可知,对于,猜想都成立.【点睛】本题主要考查了归纳、猜想与数学归纳法的证明方法,其中解答中明确数学归纳证明方法:(1)验证时成立;(2)假
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度生物质能epc工程总承包合同规范3篇
- 二零二五年度文化旅游并购与全域旅游重组合同3篇
- 二零二五年度智慧城市定向技术服务合同范本3篇
- 2025年度网络建设施工合同服务内容扩展3篇
- 二零二五年度智能交通信号系统安装服务协议
- 海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷
- 邯郸科技职业学院《创意设计实践》2023-2024学年第一学期期末试卷
- 洪水调解课程设计
- 二零二五年度房屋拆除项目居民意见征询及协调协议3篇
- 运输课课程设计书模板
- 银行金库集中可行性报告
- 镀膜员工述职报告
- 工程结算中的风险识别与防控
- 安全教育培训课件:意识与态度
- 《矿区水文地质工程地质勘探规范》水文地质单元及侵蚀基准面划分的探讨
- PAC人流术后关爱与健康教育
- 眼睑衰老机制与干预
- 渗透检测-渗透检测方法(无损检测课件)
- 职业健康管理与法律法规培训
- 销售合同补充协议书范本
- 《中国华电集团公司火电项目前期工作管理办法》
评论
0/150
提交评论