2023届连云港市重点中学数学高二下期末监测模拟试题含解析_第1页
2023届连云港市重点中学数学高二下期末监测模拟试题含解析_第2页
2023届连云港市重点中学数学高二下期末监测模拟试题含解析_第3页
2023届连云港市重点中学数学高二下期末监测模拟试题含解析_第4页
2023届连云港市重点中学数学高二下期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在定义域内可导,若,且当时,,设,,,则()A. B. C. D.2.已知是虚数单位,若复数满足,则复数对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.设全集,集合,,则()A. B. C. D.4.复数满足,且在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.5.在4次独立重复试验中,随机事件恰好发生1次的概率小于其恰好发生2次的概率,则事件在一次试验中发生概率的取值范围是()A. B. C. D.6.有下列数据:下列四个函数中,模拟效果最好的为()A. B. C. D.7.当时,总有成立,则下列判断正确的是()A. B. C. D.8.随机变量,且,则()A.0.20 B.0.30 C.0.70 D.0.809.将个不同的小球放入个盒子中,则不同放法种数有()A. B. C. D.10.设等比数列的前n项和为,公比,则()A. B. C. D.11.已知数据的中位数为,众数为,平均数为,方差为,则下列说法中,错误的是()A.数据的中位数为B.数据的众数为C.数据的平均数为D.数据的方差为12.有一个奇数列,现在进行如下分组:第一组含一个数;第二组含二个数;第三组含有三个数;第四组数有试观察每组内各数之和与组的编号数有什么关系()A.等于 B.等于 C.等于 D.等于二、填空题:本题共4小题,每小题5分,共20分。13.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.14.如图所示,在平面四边形中,,,为正三角形,则面积的最大值为__________.15.若圆柱的轴截面面积为2,则其侧面积为___;16.在四面体中,,已知,,且,则四面体的体积的最大值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现在很多人喜欢自助游,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:赞成“自助游”不赞成“自助游”合计男性女性合计(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望.附:18.(12分)在极坐标系中,圆的方程为.以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求圆的标准方程和直线的普通方程;(2)若直线与圆交于两点,且,求实数的取值范围.19.(12分)已知数列满足,,.(Ⅰ)证明:数列是等比数列,并求数列的通项公式;(Ⅱ)设,求数列的前项和.20.(12分)已知定义在上的函数的图象关于原点对称,且函数在上为减函数.(1)证明:当时,;(2)若,求实数的取值范围.21.(12分)已知半径为5的圆的圆心在轴上,圆心的横坐标是整数,且与直线相切.(1)求圆的标准方程;(2)设直线与圆相交于A,B两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得弦的垂直平分线过点.22.(10分)如图所示圆锥中,为底面圆的两条直径,,且,,为的中点.求:(1)该圆锥的表面积;(2)异面直线与所成的角的大小(结果用反三角函数值表示).

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】

x∈(-∞,1)时,x-1<0,由(x-1)•f'(x)<0,知f'(x)>0,所以(-∞,1)上f(x)是增函数.∵f(x)=f(2-x),∴f(3)=f(2-3)=f(-1)所以f(-1)<(0)<,因此c<a<b.故选B.2、C【解析】

把已知等式变形,再由复数代数形式的乘除运算化简得答案.【详解】,,复数对应的点的坐标为,,在第三象限.故选.【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,属于基础题.3、B【解析】

求得,即可求得,再求得,利用交集运算得解.【详解】由得:或,所以,所以由可得:或所以所以故选:B【点睛】本题主要考查了对数函数的性质,还考查了补集、交集的运算,属于基础题.4、C【解析】

首先化简,通过所对点在第四象限建立不等式组,得到答案.【详解】根据题意得,,因为复平面内对应的点在第四象限,所以,解得,故选C.【点睛】本题主要考查复数的四则运算,复数的几何意义,难度不大.5、D【解析】

设事件发生一次的概率为,根据二项分布求出随机事件恰好发生1次的概率,和恰好发生2次的概率,建立的不等式关系,求解即可.【详解】设事件发生一次的概率为,则事件的概率可以构成二项分布,根据独立重复试验的概率公式可得,所以.又,故.故选:D.【点睛】本题考查独立重复试验、二项分布概率问题,属于基础题.6、A【解析】分析:将,,代入四个选项,可得结论.详解:将,,代入四个选项,可得A模拟效果最好.故选:A.点睛:本题考查选择合适的模拟来拟合一组数据,考查四种函数的性质,本题是一个比较简单的综合题目.7、C【解析】

构造函数,然后判断的单调性,然后即可判断的大小.【详解】令,则所以在上单调递增因为当时,总有成立所以当时,所以故选:C【点睛】解答本题的关键是要善于观察条件中式子的特点,然后构造出函数.8、B【解析】分析:由及可得.详解:∵,∴.故选B.点睛:本题考查正态分布,若随机变量中,则正态曲线关于直线对称,因此有,().9、B【解析】试题分析:采用分步计数原理来求解:分3步,每一步4种方法,不同方法种数有种考点:分步计数原理10、D【解析】

由等比数列的通项公式与前项和公式分别表示出与,化简即可得到的值【详解】因为等比数列的公比,则,故选D.【点睛】本题考查等比数列的通项公式与前项和公式,属于基础题。11、D【解析】

利用中位数、众数、平均数、方差的性质求解.【详解】若数据的中位数为,众数为,平均数为,则由性质知数据的中位数,众数,平均数均变为原来的2倍,故正确;则由方差的性质知数据的方差为4p,故D错误;故选D.【点睛】本题考查中位数、众数、平均数、方差的应用,解题时要认真审题,是基础题.12、B【解析】第组有个数,第组有个数,所以前组的数字个数是,那么前组的数字和是,所以前组的数字个数是,那么前组的数字和是,那么第组的数字和是,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、0.245【解析】当变为时,=0.245(x+1)+0.321=0.245x+0.321+0.245,而0.245x+0.321+0.245-(0.245x+0.321)=0.245.因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元,本题填写0.245.14、.【解析】分析:在中设运用余弦定理,表示出,利用正弦定理可得,进而用三角形面积公式表示出,利用三角函数的有界性可得结果.详解:在中,由余弦定理可知,正三角形,,由正弦定理得:,,,,为锐角,,,,当时,,最大值为,故答案为.点睛:本题考查正弦定理与余弦定理的应用以及辅助角公式的应用,属于难题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.15、【解析】

根据题意得圆柱的轴截面为底边为,高为的矩形,根据几何性质即可求解。【详解】设圆柱的底面圆半径为,高为,由题意知,圆柱的轴截面为底边为,高为的矩形,所以,即。所以侧面积。【点睛】本题考查圆柱的几何性质,表面积的求法,属基础题16、【解析】

作与,连接,说明与都在以为焦点的椭球上,且都垂直与焦距,,取BC的中点F,推出当是等腰直角三角形时几何体的体积最大,求解即可.【详解】解:作与,连接,则平面,,由题意,与都在以为焦点的椭球上,且都垂直与焦距且垂足为同一点E,显然与全等,所以,取BC的中点F,,要四面体ABCD的体积最大,因为AD是定值,只需三角形EBC面积最大,因为BC是定值,所以只需EF最大即可,当是等腰直角三角形时几何体的体积最大,,,,所以几何体的体积为:,故答案为:.【点睛】本题考查棱锥的体积,考查空间想象能力以及计算能力,是中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)赞成“自助游”不赞成“自助游”合计男性女性合计在犯错误的概率不超过前提下,不能认为赞成“自助游”与性别有关系.(2)的分布列为:期望.【解析】试题分析:(1)根据分层抽样比为,可知女性共55人,从而可以知难行45人,即可填表,计算卡方,得出结论;(2)由题意知随机变量服从二项分布,从而利用公式计算分布列和期望.试题解析:(1)赞成“自助游”不赞成“自助游”合计男性女性合计将列联表中的数据代入计算,得的观测值:,在犯错误的概率不超过前提下,不能认为赞成“自助游”与性别有关系.(2)的所有可能取值为:,依题意,的分布列为:18、(1)详见解析;(2)。【解析】试题分析:(1)由得,根据极坐标与直角坐标互化公式,,所以圆C的标准方程为,直线的参数方程为,由得,代入得:,整理得:;(2)直线与圆C相交于A,B两点,圆心到直线:距离,根据直线与圆相交所得的弦长公式,所以,由题意,所以得,即,整理得:,即,解得:。试题解析:(1)的直角坐标方程为,在直线的参数方程中消得:;(2)要满足弦及圆的半径为可知只需圆心到直线的距离即可。由点到直线的距离公式有:,整理得:即解得:,故实数的取值范围为:考点:1.极坐标;2.参数方程。19、(1).(2).【解析】试题分析:(1)由得出,由等比数列的定义得出数列为等比数列,并且求出的通项公式;(2)求出数列的通项公式,利用错位相减法求出数列的前n项和.试题解析:(1)由,得,即,且,所以数列是以为首项,为公比的等比数列.所以,故数列的通项公式为.(2)由(1)知,,所以.所以.①.②①-②,得,所以.故数列的前项和.20、(1)证明见解析;(2).【解析】

(1)由于是奇函数,,因此要证明的不等式可变形为要证明,因此只要说明与异号,即与的大小和与的大小关系正好相反即可,这由减函数的定义可得,证明时可分和分别证明即可;(2)这个函数不等式由奇函数的性质可化为,然后由单调性可去“”,并注意将和限制在定义域内,可得出关于的不等式组,就可解得范围.【详解】(1)∵定义在上的函数的图象关于原点对称,∴为奇函数.若,则,∴,∴,∴成立.若,则,∴.∴,∴成立.综上,对任意,当时,有恒成立.(2),得,解得,故所求实数的取值范围是.【点睛】本题考查函数单调性的定义以及单调性与奇偶性解不不等式,解题的关键就是利用奇偶性将不等式进行变形,结合单调性转化,同时要注意自变量要限制在定义域内,考查分析问题和解决问题的能力,属于中等题.21、(Ⅰ)(Ⅱ)(Ⅲ)存在实数【解析】

本试题主要考查圆的方程的求解,以及直线与圆的位置关系的运用.解:(Ⅰ)设圆心为().由于圆与直线相切,且半径为,所以,即.因为为整数,故.故所求圆的方程为.…………………4分(2)把直线ax-y+5=0,即y=ax+5代入圆的方程,消去y整理,的(Ⅲ)设符合条件的实数存在,直线的斜率为的方程为,即由于垂直平分弦AB,故圆心必在上,所以,解得.由于,故存在实数使得过点的直线垂直平分弦AB………14分22、(1);(2).【解析】

(1)先计算出圆锥的母线长度,然后计算出圆锥的侧面积和底面积,即可计算出圆锥的表面积;(2)连接,根据位置关系可知异面直线与所成的角即为或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论