版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弹塑性力学讲义变分法第1页,共22页,2023年,2月20日,星期一
静力可能状态物体Q,在内部受体力(X,Y,Z)作用,在静力边界S上受面力(,,)作用
外力与内力(应力)处处(物体内和边界上)满足平衡。第2页,共22页,2023年,2月20日,星期一在物体内满足平衡微分方程在静力边界上满足静力边界条件在位移边界上,其反力由上式给出第3页,共22页,2023年,2月20日,星期一在物体内位移与应变满足几何方程ud=vd=wd=在位移边界Su上,满足位移边界条件变形协调变形可能状态第4页,共22页,2023年,2月20日,星期一静力可能状态(s)和变形可能状态(d)是同一物体的两种不同的受力状态和变形状态,两者可以彼此完全独立而没有任何关系静力可能状态的应力所给出的变形一般不满足变形协调变形可能状态给出的应力一般不满足平衡微分方程第5页,共22页,2023年,2月20日,星期一
可能功原理外力(体力和面力,包括反力)在变形可能的位移上所做功
=内力(应力)在变形可能的应变上所做功第6页,共22页,2023年,2月20日,星期一证明:第7页,共22页,2023年,2月20日,星期一散度定理第8页,共22页,2023年,2月20日,星期一真实状态(静力可能状态)虚位移状态(变形可能状态)虚位移(功)原理第9页,共22页,2023年,2月20日,星期一外力虚功=内力虚功(1)虚功原理没有涉及到物理方程,即没有规定应力与应变之间的具体关系,因此,对弹性、塑性情况均适用。(2)虚位移原理完全等价于平衡微分方程和力边界条件。使用可能功原理,并考虑到位移边界上反力功为零第10页,共22页,2023年,2月20日,星期一使用位移法求解,应力、应变等都通过几何方程和物理方程看作是位移的函数。若位移及与之相应的应力与应变满足:(1)单值连续(由它给出的应变满足变形协调条件),(2)位移边界条件,(3)平衡微分方程,(4)静力边界条件,则该位移就是问题的解,即为真实位移。
第11页,共22页,2023年,2月20日,星期一仅满足前两个条件的位移场是变形可能的位移场,而后两个条件等价于虚位移原理。求解弹性力学问题又可叙述为:在所有变形可能的位移场中,寻找所给出的应力能满足虚位移原理的位移场。或者,真实的位移场除必须是变形可能的位移外,它所给出的应力还应满足虚位移原理。第12页,共22页,2023年,2月20日,星期一最小势能原理
内力虚功物体是弹性的,则单位体积内的内力虚功对于整个弹性体内力虚功=应变能因虚位移而引起的改变第13页,共22页,2023年,2月20日,星期一
外力虚功
如果作用的外力是保守力,大小和方向都不变,只是作用点的位置改变外力虚功=外力势能因虚位移而引起的改变第14页,共22页,2023年,2月20日,星期一
称为弹性体的总势能,它是应变能与外力势能之和从弹性体的真实状态出发产生虚位移,所引起的总势能变分应为零,即在真实状态总势能取极值。对于处于稳定平衡的真实状态,应是取最小值,最小势能原理:在所有变形可能的位移中,使总势能达到最小值的位移,就是真实的位移。将上述结果代入虚功原理,得位移变分原理第15页,共22页,2023年,2月20日,星期一(1)虚位移原理无论是弹性、还是塑性情况下都成立,但位移变分方程式仅对弹性保守系统有效。(2)变分与微分在数学上的意义等同都是指微小的变化,因此运算方法相同,但它们的运算对象不同:微分运算中,自变量一般是坐标等变量,因变量是函数。变分运算中,自变量是函数,因变量是函数的函数,即数学上所谓的泛函。总势能是位移函数的泛函。对泛函求极值的问题,数学上称之为变分法将求解弹性力学中偏微分方程的问题转化为求解势能变分问题第16页,共22页,2023年,2月20日,星期一例6-1简支梁受分布荷载作用,不计自重时,导出以轴线挠度表示的平衡微分方程和两端的静力边界条件。解:用w表示轴线挠度,不考虑剪切作用,则梁的应变能可近似地表示为而外荷载q形成的外力势为
第17页,共22页,2023年,2月20日,星期一使用分部原理使用变分原理第18页,共22页,2023年,2月20日,星期一由于在支承点x=0,x=l上的虚位移为零,即w=0,任意,则第19页,共22页,2023年,2月20日,星期一(1)设满足位移边界的近似位移函数为 使用位移变分原理近似求解 ,
,
=U+V=
(ak,bk,ck)
(2)求弹性体的总势能 第20页,共22页,2023年,2月20日,星期一
=ak+bk+=0(3)总势能变分为零,求待定系数第21页,共22页,2023年,2月20日,星期一例题6-3用变分方法求简支梁在均布荷载作用下的挠度解:(1)设位移函数为
w(x)=c1x(l
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年度货物出口合同标的及出口手续
- 二零二四年度技术服务合同技术咨询服务合同04年专用
- 底薪加提成薪资制度合同(2篇)
- 二零二四年度货物采购合同(含详细技术参数与交付时间表)
- 二零二四年度电商企业软件许可合同
- 内控优化咨询合作协议
- 长期借款协议续借格式
- 建设工程施工合同(示范文本)
- 建筑钢管架劳务分包合同
- 生石灰购销意向协议
- DLT 866-2015 电流互感器和电压互感器选择及计算规程解读
- 小班数学活动《按颜色分类》课件
- 我的生涯发展展示
- 物流调度晋升述职报告
- 消防车辆与装备的使用指南
- 人教版pep五年级英语上下全册各课时教学反思
- 公司员工集资计划书
- 校车发展方案
- 急性疼痛治疗和APS服务课件
- 重症监护病房新生儿皮肤管理指南护理课件
- 入托入学儿童查验证培训资料
评论
0/150
提交评论