版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若分式□的运算结果为x(x≠0),则在“口”中添加的运算符号为()A.+ B.﹣ C.+或÷ D.﹣或×2.要使代数式有意义,则x的取值范围是()A.x≠2 B.x≥2 C.x>2 D.x≤23.若关于的分式方程的根是正数,则实数的取值范围().A.且 B.且C.且 D.且4.函数的自变量的取值范围是()A. B. C. D.5.如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,CE=2,连接CF,以下结论:①△ABF≌△CBF;②点E到AB的距高是;③AF=CF;④△ABF
的面积为其中一定成立的有()个.A.1 B.2 C.3 D.46.下列说法中,正确的是()A.对角线互相平分的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.对角线互相垂直的四边形一定是菱形D.对角线相等的四边形一定是正方形7.已知关于x的不等式组无解,则a的取值范围是()A.a<3 B.a≤3 C.a>3 D.a≥38.若是一个完全平方式,则k的值是()A.8 B.-2 C.-8或-2 D.8或-29.一组数据1,2,的平均数为2,另一组数据-l,,1,2,b的唯一众数为-l,则数据-1,,,1,2的中位数为()A.-1 B.1 C.2 D.310.不等式组的最小整数解是()A.0 B.-1 C.1 D.211.如图,在平面直角坐标系中,直线y=x-与矩形ABCD的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.12.如图,已知某广场菱形花坛的周长是24米,,则此花坛的面积等于()A.平方米 B.24平方米 C.平方米 D.平方米二、填空题(每题4分,共24分)13.某校举行“纪念香港回归21周年”演讲比赛,共有15名同学进入决赛(决赛成绩互不相同),比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”“中位数”或“众数”)14.如图,在四边形中,,,,,且,则______度.15.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=________度.16.在平行四边形ABCD中,若∠A=70°,则∠C的度数为_________.17.已知5+的整数部分为a,5-的小数部分为b,则a+b的值为__________18.菱形ABCD的边AB为5cm,对角线AC为8cm,则菱形ABCD的面积为_____cm1.三、解答题(共78分)19.(8分)解方程:=+1.20.(8分)解方程21.(8分)如图,点、、、是四边形各边的中点,、是对角线,求证:四边形是平行四边形.22.(10分)在Rt△ABC中,∠B=900,AC=100cm,∠A=600,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D、E运动的时间是t秒(0<t≤25)过点D作DF⊥BC于点F,连结DE、EF。(1)四边形AEFD能够成为菱形吗?若能,求相应的t值,若不能,请说明理由。(2)当t为何值时,△DEF为直角三角形?请说明理由。23.(10分)已知长方形的长,宽.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.24.(10分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.25.(12分)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.26.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.
参考答案一、选择题(每题4分,共48分)1、C【解析】
分别尝试各种符号,可得出结论.【详解】解:因为,,所以,在“口”中添加的运算符号为+或÷故选:C.【点睛】本题考核知识点:分式的运算,解题关键点:熟记分式运算法则.2、B【解析】
二次根式的被开方数x-2是非负数.【详解】解:根据题意,得
x-2≥0,
解得,x≥2;
故选:B.【点睛】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3、D【解析】
先通分再化简,根据条件求值即可.【详解】解:已知关于的分式方程的根是正数,去分母得m=2x-2-4x+8,解得x=,由于根为正数,则m<6,使分式有意义,m≠2,答案选D.【点睛】本题考查分式化简,较为简单.4、B【解析】
根据分母为零无意义,可得答案.【详解】解:由题意,得,解得,故选:B.【点睛】本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.5、C【解析】
根据菱形的性质,逐个证明即可.【详解】①四边形ABCD为菱形AB=BC∠DAB=60°△ABF≌△CBF因此①正确.②过E作EM垂直于AB的延长线于点MCE=2BE=4∠DAB=60°因此点E到AB的距高为故②正确.③根据①证明可得△ABF≌△CBFAF=CF故③正确.④和的高相等所以△ABF≌△CBF故④错误.故有3个正确,选C.【点睛】本题主要考查菱形的性质,关键在于证明三角形全等,是一道综合形比较强的题目.6、A【解析】
解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.考点:命题与定理.7、B【解析】
首先解不等式,然后根据不等式组无解确定a的范围.【详解】,解不等式①得x≥2.解不等式②得x<a﹣2.∵不等式组无解,∴a﹣2≤2.∴a≤3故选:B.【点睛】本题考查解一元一次不等式组,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了,据此即可逆推出a的取值范围.8、D【解析】
利用完全平方公式的结构特征判断即可确定出k的值.【详解】∵x1+1(k-3)x+15是一个整式的平方,
∴1(k-3)=±10,
解得:k=8或-1.
故选:D.【点睛】考查了完全平方式,熟练掌握完全平方公式是解本题的关键.9、B【解析】试题解析:∵一组数据1,2,a的平均数为2,
∴1+2+a=3×2
解得a=3
∴数据-1,a,1,2,b的唯一众数为-1,
∴b=-1,
∴数据-1,3,1,2,b的中位数为1.
故选B.点睛:中位数就是讲数据按照大小顺序排列起来,形成一个数列,数列中间位置的那个数.10、A【解析】
解:解不等式组可得,在这个范围内的最小整数为0,所以不等式组的最小整数解是0,故选A11、B【解析】
根据直线解析式分别求出点E、F的坐标,然后利用三角形的面积公式求解即可.【详解】∵当y=0时,x-=0,解得x=1,
∴点E的坐标是(1,0),即OE=1,
∵OC=4,
∴EC=OC-OE=4-1=3,
∴点F的横坐标是4,
∴y==2,即CF=2,
∴△CEF的面积=×CE×CF=×3×2=3
故选B.【点睛】本题考查的是一次函数图象上点的坐标特点,根据直线的解析式求出点E、F的坐标是解题的关键.12、C【解析】
作菱形的高DE,先由菱形的周长求出边长为6m,再由60°的正弦求出高DE的长,利用面积公式求菱形的面积.【详解】作高DE,垂足为E,则∠AED=90°,∵菱形花坛ABCD的周长是14m,∴AB=AD=6m,∵∠BAD=60°,sin∠BAD=,∴DE=3m,∴菱形花坛ABCD的面积=AB•DE=6×3=18m1.故选C.【点睛】本题考查了菱形的面积的求法,一般作法有两种:①菱形的面积=底边×高;②菱形的面积=两条对角线乘积的一半.二、填空题(每题4分,共24分)13、中位数【解析】试题分析:中位数表示的是这15名同学中成绩处于第八名的成绩,如果成绩是中位数以前,则肯定获奖,如果成绩是中位数以后,则肯定没有获奖.考点:中位数的作用14、1【解析】
根据勾股定理可得AC的长度,再利用勾股定理逆定理可证明∠DAC=90°,进而可得∠BAD的度数.【详解】∵AB=2,BC=2,∠ABC=90°,∴AC=,,∠BAC=45°,
∵12+(2)2=32,
∴∠DAC=90°,
∴∠BAD=90°+45°=1°,
故答案是:1.【点睛】考查了勾股定理和勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15、【解析】
如图,在Rt△ADF和Rt△AEF中,AD=AE,AF=AF,∴≌(),故,因为是正方形的对角线,故,故∠FAD=22.5°,故答案为22.5.16、70°【解析】
在平行四边形ABCD中,∠C=∠A,则求出∠A即可.【详解】根据题意在平行四边形ABCD中,根据对角相等的性质得出∠C=∠A,∵∠A=70°,∴∠C=70°.故答案为:70°.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的性质解答.17、12-【解析】
先估算的取值范围,再求出5+与5-的取值范围,从而求出a,b的值.【详解】解:∵3<<4,∴8<5+<9,1<5-<2,∴5+的整数部分为a=8,5-的小数部分为b=5--1=4-,∴a+b=8+4-=12-,故答案为12-.【点睛】本题主要考查了无理数的估算,解题关键是确定无理数的范围.18、14【解析】【分析】连接BD.利用菱形性质得BD=1OB,OA=AC,利用勾股定理求OB,通过对角线求菱形面积.【详解】连接BD.AC⊥BD,因为,四边形ABCD是菱形,所以,AC⊥BD,BD=1OB,OA=AC=4cm,所以,再Rt△AOB中,OB=cm,所以,BD=1OB=6cm所以,菱形的面积是cm1故答案为:14【点睛】本题考核知识点:菱形的性质.解题关键点:利用勾股定理求菱形的对角线.三、解答题(共78分)19、.
【解析】分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.详解:,,.经检验:是原方程的解,所以原方程的解是.点睛:此题考查了解分式方程,熟练掌握运算法则是解本题的关键.20、x=2【解析】
方程两边同时乘以x-1,化为整式方程,解整式方程后进行检验即可得.【详解】解:两边同时乘以x-1,得,解得:,检验:当x=2时,x-1≠0,所以原分式方程的解是.【点睛】本题考查了解分式方程,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.21、见解析.【解析】
根据三角形中位线定理得到,EF∥AC,,GH∥AC,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明结论.【详解】证明:、分别是、的中点是的中位线同理:四边形是平行四边形【点睛】本题考查的是三角形中位线定理、平行四边形的判定,掌握三角形中位线定理是解题的关键.22、(1)能,10;(2)或12,理由见解析.【解析】
(1)首先根据题意计算AB的长,再证明四边形AEFD是平行四边形,要成菱形则AD=AE,因此可得t的值.(2)要使△DEF为直角三角形,则有两种情况:①∠EDF=90°;②∠DEF=90°,分别计算即可.【详解】解:(1)能,∵在Rt△ABC中,∠C=90°﹣∠A=30°,∴AB=AC=×60=30cm。∵CD=4t,AE=2t,又∵在Rt△CDF中,∠C=30°,∴DF=CD=2t。∴DF=AE。∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形。当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10。∴当t=10时,AEFD是菱形。(2)若△DEF为直角三角形,有两种情况:①如图1,∠EDF=90°,DE∥BC,则AD=2AE,即60﹣4t=2×2t,解得:t=。②如图2,∠DEF=90°,DE⊥AC,则AE=2AD,即2t=2×60-8t,解得:t=12。综上所述,当t=或12时,△DEF为直角三角形【点睛】本题主要考查解直角三角形,关键在于第二问中直角的确定,这类问题是分类讨论的思想,应当掌握.23、(1);(2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;
(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可.试题解析:(1)∴长方形的周长为.(2)长方形的面积为:正方形的面积也为4.边长为周长为:∴长方形的周长大于正方形的周长.24、(1)直线AB的解析式为y=1x﹣1,(1)点C的坐标是(1,1).【解析】
待定系数法,直线上点的坐标与方程的.(1)设直线AB的解析式为y=kx+b,将点A(1,0)、点B(0,﹣1)分别代入解析式即可组成方程组,从而得到AB的解析式.(1)设点C的坐标为(x,y),根据三角形面积公式以及S△BOC=1求出C的横坐标,再代入直线即可求出y的值,从而得到其坐标.【详解】解:(1)设直线AB的解析式为y=kx+b,∵直线AB过点A(1,0)、点B(0,﹣1),∴{k+b∴直线AB的解析式为y=1x﹣1.(1)设点C的坐标为(x,y),∵S△BOC=1,∴12•1•x=1,解得x=1∴y=1×1﹣1=1.∴点C的坐标是(1,1).25、详见解析.【解析】
(1)根据全等三角形的判定方法,判断出△ADE≌△CBF,即可推得DE=BF.(2)首先判断出DE∥BF;然后根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 贵州城市职业学院《安全评价理论与技术》2023-2024学年第一学期期末试卷
- 贵阳职业技术学院《人机工程研究》2023-2024学年第一学期期末试卷
- 2025青海省建筑安全员《A证》考试题库
- 生态保护修复和水土流失综合治理项目可行性研究报告-生态修复需求迫切
- 贵阳人文科技学院《工科大学化学-有机化学基础》2023-2024学年第一学期期末试卷
- 广州中医药大学《物流信息系统》2023-2024学年第一学期期末试卷
- 2025陕西建筑安全员C证考试题库
- 2025云南省建筑安全员《A证》考试题库
- 广州应用科技学院《钢筋混凝土原理》2023-2024学年第一学期期末试卷
- 2025山西省建筑安全员C证(专职安全员)考试题库
- 17J008挡土墙(重力式、衡重式、悬臂式)图示图集
- 2025年济南铁路局招聘笔试参考题库含答案解析
- 2024至2030年中国大颗粒尿素行业投资前景及策略咨询研究报告
- 《长方体和正方体》复习(教案)
- 超声技术报告范文
- 思想道德与法治(同济大学)知到智慧树章节答案
- 小学语文阅读理解24个万能答题公式
- 湖南省怀化市2023-2024学年七年级上学期语文期末试卷(含答案)
- 《廊坊市绿色建筑专项规划(2020-2025)》
- 2024-2030年中国湿巾行业发展趋势及竞争策略分析报告
- 2023-2024学年全国小学二年级上语文人教版期末试卷(含答案解析)
评论
0/150
提交评论