版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,点为正方体的中心,点为棱的中点,点为棱的中点,则空间四边形在该正方体的面上的正投影不可能是()A. B. C. D.2.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12C.14 D.163.已知平面,,直线,满足,,则下列是的充分条件是()A. B. C. D.4.设数列的前项和为,若,,成等差数列,则的值是()A. B. C. D.5.已知函数对于任意的满足(其中是函数的导函数),则下列不等式成立的是A. B.C. D.6.若集合,则实数的取值范围是()A. B.C. D.7.设,是抛物线上两点,抛物线的准线与轴交于点,已知弦的中点的横坐标为3,记直线和的斜率分别为和,则的最小值为()A. B.2 C. D.18.根据历年气象统计资料,某地四月份吹东风的概率为,下雨的概率为,既吹东风又下雨的概率为.则在下雨条件下吹东风的概率为()A. B. C. D.9.已知,则()A.1 B. C. D.10.设函数定义如下表:1234514253执行如图所示的程序框图,则输出的的值是()A.4 B.5 C.2 D.311.某校有6名志愿者,在放假的第一天去北京世园会的中国馆服务,任务是组织游客参加“祝福祖国征集留言”、“欢乐世园共绘展板”、“传递祝福发放彩绳”三项活动,其中1人负责“征集留言”,2人负责“共绘展板”,3人负责“发放彩绳”,则不同的分配方案共有()A.30种 B.60种 C.120种 D.180种12.函数的值域是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.随机变量,变量,则__________.14.若,,则实数的取值范围为__________.15.已知为数字0,1,2,…,9的一个排列,满足,且,则这样排列的个数为___(用数字作答).16.已知某市社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)用数学归纳法证明:当时,能被7整除.18.(12分)四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一个球,则共有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?19.(12分)某校倡导为特困学生募捐,要求在自动购水机处每购买一箱矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:售出水量(单位:箱)76656收入(单位:元)165142148125150学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21~50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.(1)若售出水量箱数与成线性相关,则某天售出9箱水时,预计收入为多少元?(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望.附:回归直线方程,其中,.20.(12分)已知函数,.(Ⅰ)求过原点,且与函数图象相切的切线方程;(Ⅱ)求证:当时,.21.(12分)已知函数f(x)=ln.(1)求函数f(x)的定义域,并判断函数f(x)的奇偶性;(2)对于x∈[2,6],f(x)=ln>ln恒成立,求实数m的取值范围.22.(10分)已知的图象上相邻两对称轴之间的距离为1.(1)求的单调递增区间;(2)若,且,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】分析:根据空间四边形在正方体前后面、上下面和左右面上的正投影,即可得到正确的选项.详解:空间四边形在正方体前后面上的正投影是A选项;空间四边形在正方体前上下上的正投影是B选项;空间四边形在正方体左右面上的正投影是D选项,故选C.点睛:本题主要考查了平行投影和平行投影的作法的应用问题,主要同一图形在不同面上的投影不一定相同,属于基础题,着重考查了空间推理能力.2、B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.点睛:三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.3、D【解析】
根据直线和平面,平面和平面的位置关系,依次判断每个选项的充分性和必要性,判断得到答案.【详解】当时,可以,或,或相交,不充分,错误;当时,可以,或,或相交,不充分,错误;当时,不能得到,错误;当,时,则,充分性;当时,,故,与关系不确定,故不必要,正确;故选:.【点睛】本题考查了直线和平面,平面和平面的位置关系,充分条件,意在考查学生的空间想象能力和推断能力.4、B【解析】
因为成等差数列,所以,当时,;当时,,即,即,数列是首项,公比的等比数列,,故选B.5、D【解析】
根据题目条件,构造函数,求出的导数,利用“任意的满足”得出的单调性,即可得出答案。【详解】由题意知,构造函数,则。当时,当时,恒成立在单调递增,则,化简得,无法判断A选项是否成立;,化简得,故B选项不成立;,化简得,故C选项不成立;,化简得,故D选项成立;综上所述,故选D。【点睛】本题主要考查了构造函数法证明不等式,常利用导数研究函数的单调性,再由单调性证明不等式,是函数、导数、不等式综合中的一个难点。6、D【解析】
本题需要考虑两种情况,,通过二次函数性质以及即集合性质来确定实数的取值范围。【详解】设当时,,满足题意当时,时二次函数因为所以恒大于0,即所以,解得。【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论。7、D【解析】
设,运用点差法和直线的斜率公式和中点坐标公式,可得,再由基本不等式可得所求最小值.【详解】设,可得,相减可得,可得,又由,所以,则,当且仅当时取等号,即的最小值为.故选:D.【点睛】本题主要考查了抛物线的方程和性质,考查直线的斜率公式和点差法的运用,以及中点坐标公式,考查方程思想和运算能力,属于基础题.8、C【解析】
在下雨条件下吹东风的概率=既吹东风又下雨的概率下雨的概率【详解】在下雨条件下吹东风的概率为,选C【点睛】本题考查条件概率的计算,属于简单题.9、C【解析】
由二项式定理可知,为正数,为负数,令代入已知式子即可求解.【详解】因为,由二项式定理可知,为正数,为负数,所以.故选:C【点睛】本题考查二项式定理求系数的绝对值和;考查运算求解能力;属于基础题.10、B【解析】
根据流程图执行循环,确定周期,即得结果【详解】执行循环得:所以周期为4,因此结束循环,输出,选B.【点睛】本题考查循环结构流程图,考查基本分析求解能力,属基础题.11、B【解析】
从6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,再从剩下的人中选3人负责“发放彩绳,即可得出不同的分配方案.【详解】从6人中选1人负责“征集留言”,从剩下的人中选2人负责“共绘展板”,再从剩下的人中选3人负责“发放彩绳,则不同的分配方案共有种故选:B【点睛】本题主要考查了分组分配问题,属于基础题.12、A【解析】分析:由于函数在上是减函数,且,利用单调性求得函数的值域详解:函数在上是减函数,且,当时,函数取得最小值为当时,函数取得最大值为故函数的值域为故选点睛:本题主要考查的是指数函数的单调性,求函数的值域,较为基础。二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:先根据二项分布得,再根据,得详解:因为,所以,因为,所以点睛:二项分布),则此随机变量的期望可直接利用这种典型分布的期望公式.14、【解析】当m=0时,符合题意.当m≠0时,,则0<m<4,则0⩽m<4答案为:.点睛:解本题的关键是处理二次函数在区间上大于0的恒成立问题,对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.15、3456【解析】
先计算总和为45,将相加为15的3数组罗列出来,计算每个选法后另外一组的选法个数,再利排列得到答案.【详解】0,1,2,…,9所有数据之和为45相加为15的3数组有:当选择后,可以选择,,3种选择同理可得:分别有3,3,3,2,3,1,2,3,3,1共24种选择选定后只有一种排列有种排列有种排列共有中选择.故答案为3456【点睛】本题考查了排列组合的计算,将和为15的数组罗列出来是解题的关键.16、【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解析】
运用数学归纳法证明,考虑检验成立,再假设成立,证明时,注意变形,即可得证.【详解】证:①当时,,能被7整除;②假设时,能被7整除,那么当时,,由于能被7整除,能被7整除,可得能被7整除,即当时,能被7整除;综上可得当时,能被7整除.【点睛】本题主要考查数学归纳法,数学归纳法的基本形式:设是关于自然数的命题,若成立(奠基);假设成立,可以推出成立(归纳),则对一切大于等于的自然数都成立.属于基础题.18、(1)24;(2)144.【解析】分析:(1)直接把4个球全排列即得共有多少种不同的放法.(2)利用乘法分步原理解答.详解:(1)每个盒子放一个球,共有=24种不同的放法.(2)先选后排,分三步完成:第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有种选法;第三步:三个元素放入三个盒中,有种放法.故共有4×6×6=144种放法.点睛:(1)本题主要考查计数原理和排列组合的综合应用,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用解法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.19、(1)206;(2)见解析【解析】试题分析:(1)先求出君子,代入公式求,,再求线性回归方程自变量为9的函数值,(2)先确定随机变量取法,在利用概率乘法求对应概率,列表可得分布列,根据数学期望公式求期望.试题解析:(1),经计算,所以线性回归方程为,当时,的估计值为206元;(2)的可能取值为0,300,500,600,800,1000;;;;;;;03005006008001000所以的数学期望.20、(Ⅰ);(Ⅱ)证明见解析.【解析】分析:(1)设出切点,求导,得到切线斜率,由点斜式得到切线方程;(2)先证得,再证即可,其中证明过程,均采用构造函数,求导研究单调性,求得最值大于0即可.详解:(Ⅰ)设切点,则,,,切线方程为:,即:,将原点带入得:,,切线方程为:.(Ⅱ)设,,,则.当时,,当时,,则,所以,即:,.设,,,,,当时,,当时,,则,所以,即:,,所以.点睛:利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.21、(1)(-∞,-1)∪(1,+∞),奇函数.(2)0<m<7.【解析】
(1)解不等式>0,即得函数的定义域.再利用奇偶函数的判定方法判断函数的奇偶性.(2)转化成以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.再求出函数的最小值得解.【详解】(1)由>0,解得x<-1或x>1,所以函数f(x)的定义域为(-∞,-1)∪(1,+∞),当x∈(-∞,-1)∪(1,+∞)时,f(-x)=ln=ln=ln=-ln=-f(x),所以f(x)=ln是奇函数.(2)由于x∈[2,6]时,f(x)=ln>ln恒成立,所以>>0,因为x∈[2,6],所以0<m<(x+1)(7-x)在x∈[2,6]上恒成立.令g(x)=(x+1)(7-x)=-(x-3)2+16,x∈[2,6],由二次函数的性质可知,x∈[2,3]时函数g(x)单调递增,x∈[3,6]时函数g(x)单调递减,即x∈[2,6]时,g(x)m
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人员密集场所应急疏散演练
- 新生儿肺炎的治疗及护理
- 广州电影院租赁合同样本
- 美发师形象设计合同
- 铝单板施工合同住宅小区外墙翻新
- 客户索赔管理办法合同管理
- 网络安全销售合同评审指南
- 体育馆自来水施工安装协议
- 石化弱电工程安装协议模板
- 商业综合体人防设备施工合同
- 2020年山东烟台中考满分作文《就这样被打动》9
- 国网员工合同模板
- 建设2台66000KVA全封闭低碳硅锰矿热炉项目竣工环保验收监测调查报告
- 期中核心素质卷(试题)-2024-2025学年数学六年级上册北师大版
- 《Photoshop图像处理》5.《滤镜特效技巧的学习》试卷
- 2024年新人教版数学七年级上册 3.2 求代数式的值 教学课件
- 2025届四川省绵阳市高三第一次调研测试物理试卷含解析
- 2025年高考语文专题复习:标点符号的规范用法 课件
- 华为HCIA OpenEuler H12-611认证必考试复习题库(含答案)
- 《无机化学》课件-第7章 配位化合物
- 2024年秋一年级上册10 ai ei ui 教学设计(表格式3课时)作业设计
评论
0/150
提交评论