2023届河南省南阳市达标名校数学高二第二学期期末经典试题含解析_第1页
2023届河南省南阳市达标名校数学高二第二学期期末经典试题含解析_第2页
2023届河南省南阳市达标名校数学高二第二学期期末经典试题含解析_第3页
2023届河南省南阳市达标名校数学高二第二学期期末经典试题含解析_第4页
2023届河南省南阳市达标名校数学高二第二学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某体育彩票规定:从01到36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后再从01到17个号中选出3个连续的号,从19到29个号中选出2个连续的号,从30到36个号中选出1个号组成一注.若这个人要把这种要求的号全买,至少要花的钱数为()A.2000元 B.3200元 C.1800元 D.2100元2.若随机变量服从正态分布,则()附:,.A.1.3413 B.1.2718 C.1.1587 D.1.12283.已知全集,则A. B. C. D.4.在长方体中,为棱的中点,则异面直线与所成角的余弦值为()A. B. C. D.5.如图所示,函数的图象在点P处的切线方程是,则()A. B.1 C.2 D.06.如图,阴影部分的面积是()A. B. C. D.7.一元二次不等式的解集为()A. B.C. D.8.在一组样本数据不全相等的散点图中,若所有样本点都在直线上,则这组样本数据的样本相关系数为()A.3 B.0 C. D.19.已知为两条不同的直线,为两个不同的平面,则下列四个命题中正确的是①若则;②若则;③若,则;④若则A.①②④ B.②③ C.①④ D.②④10.已知函数的定义域为,则函数的定义域为()A. B. C. D.11.的展开式中的系数为()A.5 B.10 C.20 D.3012.已知函数,若对于区间上的任意,都有,则实数的最小值是()A.20 B.18C.3 D.0二、填空题:本题共4小题,每小题5分,共20分。13.设,过下列点分别作曲线的切线,其中存在三条直线与曲线相切的点是__________.14.,则使成立的值是____________.15.用0,1,2,3,4可以组成_______个无重复数字五位数.16.已知函数,对于任意,都存在,使得,则的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设全集为.(Ⅰ)求();(Ⅱ)若,求实数的取值范围.18.(12分)时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过天收费元,超过天的部分每天收费元(不足天按天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过天还车的概率分别为和,天以上且不超过天还车的概率分别为和,两人租车都不会超过天.(1)求甲所付租车费比乙多的概率;(2)设甲、乙两人所付的租车费之和为随机变量,求的分布列和数学期望.19.(12分)已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆的方程:(2)若是椭圆上的动点,求的取值范围;(3)直线:与椭圆交于异于椭圆顶点的,两点,为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与轴交于点.若直线,的斜率分别为,试判断,是否为定值,若是,求出该定值;若不是,说明理由.20.(12分)已知椭圆C:的左、右顶点分别为A,B其离心率,点M为椭圆上的一个动点,面积的最大值是求椭圆C的方程;若过椭圆C右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当时,求点P的坐标.21.(12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.记甲击中目标的次数为,乙击中目标的次数为.(1)求的分布列;(2)求和的数学期望.22.(10分)在直角坐标系中,曲线:(为参数),直线:(为参数).(1)判断直线与曲线的位置关系;(2)点是曲线上的一个动点,求到直线的距离的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】第步从到中选个连续号有种选法;第步从到中选个连续号有种选法;第步从到中选个号有种选法.由分步计数原理可知:满足要求的注数共有注,故至少要花,故选D.2、C【解析】

根据正态曲线的对称性,以及,可得结果.【详解】,故选:C【点睛】本题考查正态分布,重点把握正态曲线的对称性,属基础题.3、C【解析】

根据补集定义直接求得结果.【详解】由补集定义得:本题正确选项:【点睛】本题考查集合运算中的补集运算,属于基础题.4、D【解析】

取CC1的中点F,连结DF,A1F,EF,推导出四边形BCEF是平行四边形,从而异面直线AE与A1D所成角即为相交直线DF与A1D所成角,由此能求出异面直线AE与A1D所成角的余弦值.【详解】取的中点.连接.因为为棱的中点,所以,所以四边形为平行四边形.所以.故异面直线与所成的角即为相交直线与所成的角.因为,所以.所以.即为直角三角形,从而.故选D【点睛】本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.5、B【解析】分析:由切线方程确定切点坐标,然后结合导数的几何意义整理计算即可求得最终结果.详解:由切线方程可知,当时,,切点坐标为,即,函数在处切线的斜率为,即,据此可知:.本题选择B选项.点睛:本题主要考查切线的几何意义及其应用,意在考查学生的转化能力和计算求解能力.6、C【解析】由定积分的定义可得,阴影部分的面积为.本题选择C选项.点睛:利用定积分求曲线围成图形的面积的步骤:(1)画出图形;(2)确定被积函数;(3)确定积分的上、下限,并求出交点坐标;(4)运用微积分基本定理计算定积分,求出平面图形的面积.求解时,注意要把定积分与利用定积分计算的曲线围成图形的面积区别开:定积分是一个数值(极限值),可为正,可为负,也可为零,而平面图形的面积在一般意义上总为正.7、C【解析】

根据一元二次不等式的解法,即可求得不等式的解集,得到答案.【详解】由题意,不等式,即或,解得,即不等式的解集为,故选C.【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题.8、D【解析】

根据回归直线方程可得相关系数.【详解】根据回归直线方程是可得这两个变量是正相关,故这组样本数据的样本相关系数为正值,且所有样本点(xi,yi)(i=1,2,…,n)都在直线上,则有|r|=1,∴相关系数r=1.故选:D.【点睛】本题考查了由回归直线方程求相关系数,熟练掌握回归直线方程的回归系数的含义是解题的关键.9、D【解析】

根据选项利用判定定理、性质定理以及定义、举例逐项分析.【详解】①当都在平面内时,显然不成立,故错误;②因为,则过的平面与平面的交线必然与平行;又因为,所以垂直于平面内的所有直线,所以交线,又因为交线,则,故正确;③正方体上底面的两条对角线平行于下底面,但是两条对角线不平行,故错误;④因为垂直于同一平面的两条直线互相平行,故正确;故选:D.【点睛】本题考查判断立体几何中的符号语言表述的命题的真假,难度一般.处理立体几何中符号语言问题,一般可采用以下方法:(1)根据判定、性质定理分析;(2)根据定义分析;(3)举例说明或者作图说明.10、D【解析】

函数中的取值范围与函数中的范围一样.【详解】因为函数的定义域为,所以,所以,所以函数的定义域为.选D.【点睛】求抽象函数定义域是一种常见的题型,已知函数的定义域或求函数的定义域均指自变量的取值范围的集合,而对应关系所作用的数范围是一致的,即括号内数的取值范围一样.11、D【解析】

根据乘法分配律和二项式展开式的通项公式,列式求得的系数.【详解】根据乘法分配律和二项式展开式的通项公式,题目所给表达式中含有的为,故展开式中的系数为,故选D.【点睛】本小题主要考查二项式展开式通项公式的应用,考查乘法分配律,属于基础题.12、A【解析】

对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,利用导数确定函数的单调性,求最值,即可得出结论.【详解】对于区间[﹣3,2]上的任意x1,x2都有|f(x1)﹣f(x2)|≤t,等价于对于区间[﹣3,2]上的任意x,都有f(x)max﹣f(x)min≤t,∵f(x)=x3﹣3x﹣1,∴f′(x)=3x2﹣3=3(x﹣1)(x+1),∵x∈[﹣3,2],∴函数在[﹣3,﹣1]、[1,2]上单调递增,在[﹣1,1]上单调递减,∴f(x)max=f(2)=f(﹣1)=1,f(x)min=f(﹣3)=﹣19,∴f(x)max﹣f(x)min=20,∴t≥20,∴实数t的最小值是20,故答案为A【点睛】本题考查导数知识的运用,考查恒成立问题,正确求导,确定函数的最值是关键.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】

设切点坐标为,求出切线方程,将点代入切线方程,整理得,令,利用导数研究函数的单调性,利用单调性求得极值,利用数形结合列不等式,将五个点逐一代入检验即可得结果.【详解】设切点坐标为,则切线方程为,设切线过点,代入切线方程方程可得,整理得,令,则,过能作出三条直线与曲线相切的充要条件为:方程有三个不等的实数根,即函数有三个不同的零点,故只需,分别把,代入可以验证,只有符合条件,故答案为.【点睛】本题主要考查利用导数研究函数的单调性、函数的极值以及函数的零点,属于中档题.对于与“三次函数”的零点个数问题,往往考虑函数的极值符号来解决,设函数的极大值为,极小值为:一个零点或;两个零点或;三个零点.14、-4或2【解析】

当0时,;当时,.由此求出使成立的值.【详解】,当0时,解得当时,,解得故答案为-4或2.【点睛】本题考查函数值的求法及应用,是基础题,解题时要认真审题,注意函数性质的合理运用.15、96【解析】

利用乘法原理,即可求出结果.【详解】用0、1、2、3、4组成一个无重复数字的五位数共有4×4×3×2×1=96种不同情况,故选:A.【点睛】本题主要考查排列、组合以及简单计数原理的应用,属于基础题.16、1【解析】试题分析:由知,;由f(m)=g(n)可化为;故;令,t≤1;则,则;故在(-∞,1]上是增函数,且y′=0时,t=0;故在t=0时有最小值,故n-m的最小值为1;考点:函数恒成立问题;全称命题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】分析:⑴化简集合,根据集合的运算法则即可求出结果⑵化简集合,根据得到,即可求得答案详解:由得,即由,得,即(Ⅰ)由已知得C,∴C(Ⅱ)∵,∴又∵,∴有解得所以的取值范围为.点睛:本题是一道基础题,主要考查了集合的运算法则.在语句中,将其转化子集问题,即可求出结果.18、(1);(2)见解析【解析】

(1)将情况分为甲租天以上,乙租不超过天;甲租天,乙租天两种情况;分别在两种情况下利用独立事件概率公式可求得对应概率,加和得到结果;(2)首先确定所有可能的取值,再求得每个取值所对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【详解】(1)若甲所付租车费比乙多,则分为:甲租天以上,乙租不超过天;甲租天,乙租天两种情况①甲租天以上,乙租不超过天的概率为:②甲租天,乙租天的概率为:甲所付租车费比乙多的概率为:(2)甲、乙两人所付的租车费之和所有可能的取值为:则;;;;的分布列为:数学期望【点睛】本题考查独立事件概率的求解、离散型随机变量的分布列与数学期望的求解,涉及到和事件、积事件概率的求解,考查学生的运算和求解能力,属于常考题型.19、(1);(2);(3)是定值,为0.【解析】

(1)由题意可知:,解这个方程组即可;(2)把椭圆的方程化为参数方程,根据辅助角公式可以求出的取值范围;(3)直线方程与椭圆的标准方程联立,利用根与系数关系,可以判断出为定值.【详解】(1)因为以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.所以有,解得,所以椭圆的方程为:(2)椭圆椭圆的参数方程为:(为参数且).因为是椭圆上的动点,所以,其中..(3)设,则,.直线:与椭圆的方程联立为:消去得,由根与系数关系可得:直线的方程为:,令,因为,所以.。.【点睛】本题考查了求椭圆的标准方程,考查了椭圆参数方程的应用,考查了直线与椭圆的位置关系,考查了数学运算能力.20、(1)(2)当时,,当时,【解析】

(1)由题意可知解方程即可得解;(2)设直线的方程为,,由直线与椭圆联立得,由根与系数的关系可得,从而得中点的坐标,进而得的垂直平分线方程,令x=0可得,再由,用坐标表示即可解.【详解】(1)由题意可知解得,,所以椭圆方程为.(2)由(1)知,设直线的方程为,,把代入椭圆方程,整理得,所以,则,所以中点的坐标为,则直线的垂直平分线方程为,得又,即,化简得,解得故当时,,当时,.【点睛】本题主要考查了直线与椭圆的位置关系,用到了向量问题坐标化,坐标通过设而不求的方程灵活处理,考查了学生的运算能力,属于中档题.21、(1)见解析;(2),【解析】

(1)的可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论