2023届贵州省六盘水市第七中学数学高二下期末教学质量检测模拟试题含解析_第1页
2023届贵州省六盘水市第七中学数学高二下期末教学质量检测模拟试题含解析_第2页
2023届贵州省六盘水市第七中学数学高二下期末教学质量检测模拟试题含解析_第3页
2023届贵州省六盘水市第七中学数学高二下期末教学质量检测模拟试题含解析_第4页
2023届贵州省六盘水市第七中学数学高二下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,长方形的四个顶点为,,,,曲线经过点.现将一质点随机投入长方形中,则质点落在图中阴影区域外的概率是()A. B. C. D.2.已知函数若关于的方程有7个不等实根,则实数的取值范围是()A. B. C. D.3.设函数,若实数分别是的零点,则()A. B. C. D.4.中,若,则该三角形一定是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形5.已知是虚数单位,复数满足,则()A. B. C.2 D.16.古印度“汉诺塔问题”:一块黄铜平板上装着A,B,C三根金铜石细柱,其中细柱A上套着个大小不等的环形金盘,大的在下、小的在上.将这些盘子全部转移到另一根柱子上,移动规则如下:一次只能将一个金盘从一根柱子转移到另外一根柱子上,不允许将较大盘子放在较小盘子上面.若A柱上现有3个金盘(如图),将A柱上的金盘全部移到B柱上,至少需要移动次数为()A.5 B.7 C.9 D.117.过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于()A.2 B.3 C.4 D.58.已知集合,,那么()A. B. C. D.9.已知三棱锥的底面是等边三角形,点在平面上的射影在内(不包括边界),.记,与底面所成角为,;二面角,的平面角为,,则,,,之间的大小关系等确定的是()A. B.C.是最小角,是最大角 D.只能确定,10.设,,若,则实数的取值范围是()A. B. C. D.11.己知变量x,y的取值如下表:x3456y2.5344.5由散点图分析可知y与x线性相关,且求得回归方程为,据此预测:当时,y的值约为A.5.95 B.6.65 C.7.35 D.712.由与直线围成的图形的面积是()A. B. C. D.9二、填空题:本题共4小题,每小题5分,共20分。13.如图,某建筑工地搭建的脚手架局部类似于一个

的长方体框架,一个建筑工人欲从

A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为______________.14.已知函数(),若对任意,总存在满足,则正数a的最小值是_______.15.设复数满足,则=__________.16.已知,则____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业有、两个岗位招聘大学毕业生,其中第一天收到这两个岗位投简历的大学生人数如下表:岗位岗位总计女生12820男生245680总计3664100(1)根据以上数据判断是有的把握认为招聘的、两个岗位与性别有关?(2)从投简历的女生中随机抽取两人,记其中投岗位的人数为,求的分布列和数学期望.参考公式:,其中.参考数据:0.0500.0250.0103.8415.0246.63518.(12分)已知函数,且曲线在点处的切线与直线垂直.(1)求函数的单调区间;(2)求的解集.19.(12分)已知,.当时,求的值;当时,是否存在正整数n,r,使得、、,依次构成等差数列?并说明理由;当时,求的值用m表示.20.(12分)在平面直角坐标系中,射线的倾斜角为,且斜率.曲线的参数方程为为参数);在以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为.(1)分别求出曲线和射线的极坐标方程;(2)若与曲线,交点(不同于原点)分别为A,B,求|OA||OB|的取值范围.21.(12分)数列满足,等比数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.22.(10分)己知集合,(1)若,求实数a的取值范围;(2)若,求实数a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可.【详解】由已知易得:,由面积测度的几何概型:质点落在图中阴影区域外的概率故选:A【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.2、C【解析】分析:画出函数的图象,利用函数的图象,判断f(x)的范围,然后利用二次函数的性质求解a的范围.详解:函数的图象如图:关于f2(x)+(a﹣1)f(x)﹣a=0有7个不等的实数根,即[f(x)+a][f(x)﹣1]=0有7个不等的实数根,f(x)=1有3个不等的实数根,∴f(x)=﹣a必须有4个不相等的实数根,由函数f(x)图象可知﹣a∈(1,2),∴a∈(﹣2,﹣1).故选:C.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.3、A【解析】由题意得,函数在各自的定义域上分别为增函数,∵,又实数分别是的零点∴,∴,故.选A.点睛:解答本题时,先根据所给的函数的解析式判断单调性,然后利用判断零点所在的范围,然后根据函数的单调性求得的取值范围,其中借助0将与联系在一起是关键.4、D【解析】

利用余弦定理角化边后,经过因式分解变形化简可得结论.【详解】因为,所以,所以,所以,所以,所以,所以或,所以或,所以三角形是等腰三角形或直角三角形.故选:D【点睛】本题考查了利用余弦定理角化边,考查了利用余弦定理判断三角形的形状,属于基础题.5、A【解析】分析:先根据已知求出复数z,再求|z|.详解:由题得,所以.故答案为A.点睛:(1)本题主要考查复数的除法运算,意在考查学生对该基础知识的掌握水平.(2)复数的模.6、B【解析】

设细柱A上套着n个大小不等的环形金盘,至少需要移动次数记为an,则a【详解】设细柱A上套着n个大小不等的环形金盘,至少需要移动次数记为an要把最下面的第n个金盘移到另一个柱子上,则必须把上面的n-1个金盘移到余下的一个柱子上,故至少需要移动an-1把第n个金盘移到另一个柱子上后,再把n-1个金盘移到该柱子上,故又至少移动an-1次,所以aa1=1,故a2【点睛】本题考查数列的应用,要求根据问题情境构建数列的递推关系,从而解决与数列有关的数学问题.7、C【解析】

由题意可知:|AC|=2|AF|,则∠ACD,利用三角形相似关系可知丨AF丨=丨AD丨,直线AB的切斜角,设直线l方程,代入椭圆方程,利用韦达定理及抛物线弦长公式求得丨AB丨,即可求得|BF|.【详解】抛物线y2=4x焦点F(1,0),准线方程l:x=﹣1,准线l与x轴交于H点,过A和B做AD⊥l,BE⊥l,由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,|AC|=2|AF|,即|AC|=2|AD|,则∠ACD,由丨HF丨=p=2,∴,则丨AF丨=丨AD丨,设直线AB的方程y(x﹣1),,整理得:3x2﹣10x+3=0,则x1+x2,由抛物线的性质可知:丨AB丨=x1+x2+p,∴丨AF丨+丨BF丨,解得:丨BF丨=4,故选:C.【点睛】本题考查抛物线的性质,直线与抛物线的位置关系,考查相似三角形的性质,考查计算能力,数形结合思想,属于中档题.8、C【解析】

解出集合B,即可求得两个集合的交集.【详解】由题:,所以.故选:C【点睛】此题考查求两个集合的交集,关键在于准确求出方程的解集,根据集合交集运算法则求解.9、C【解析】

过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,推导出OA<OB<OC,AB=BC=AC,OD<OF<OE,且OE<OB,OF<OA,由此得到结论.【详解】解:如图,过作PO⊥平面ABC,垂足为,过作OD⊥AB,交AB于D,过作OE⊥BC,交BC于E,过作OF⊥AC,交AC于F,连结OA,OB,OC,PD,PE,PF,∵△ABC为正三角形,PA<PB<PC,二面角P−BC−A,二面角P−AC−B的大小分别为,,PA,PB与底面所成角为,,∴=∠PAO,=∠PBO,γ=∠PEO,=∠PFO,OA<OB<OC,AB=BC=AC,在直角三角形OAF中,,在直角三角形OBE中,,OA<OB,∠OAF<∠OBE,则OF<OE,同理可得OD<OF,∴OD<OF<OE,且OE<OB,OF<OA,∴<,<,>,<,可得是最小角,是最大角,故选:C.【点睛】本题考查线面角、二面角的大小的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10、C【解析】

分别求解出集合和,根据交集的结果可确定的范围.【详解】,本题正确选项:【点睛】本题考查根据交集的结果求解参数范围的问题,属于基础题.11、B【解析】

先计算数据的中心点,代入回归方程得到,再代入计算对应值.【详解】数据中心点为代入回归方程当时,y的值为故答案选B【点睛】本题考查了数据的回归方程,计算数据中心点代入方程是解题的关键,意在考查学生的计算能力.12、C【解析】分析:先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.详解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S==(﹣x3﹣x2+3x)=.故答案为:C.点睛:(1)本题主要考查利用定积分的几何意义和定积分求面积,意在考查学生对这些知识的掌握水平.(2)从几何上看,如果在区间上函数连续,且函数的图像有一部分在轴上方,有一部分在轴下方,那么定积分表示轴上方的曲边梯形的面积减去下方的曲边梯形的面积.二、填空题:本题共4小题,每小题5分,共20分。13、​【解析】

先求出最近路线的所有走法共有种,再求出不连续向上攀登的次数,然后可得概率.【详解】最近的行走路线就是不走回头路,不重复,所以共有种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有种,故所求概率为.【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.14、【解析】

对任意,总存在满足,只需函数的值域为函数的值域的子集.【详解】函数()是对勾函数,对任意,在时,即取得最小值,值域为当时,若,即时在上是单减函数,在上是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.显然成立当时,若,即时是单增函数,此时值域为由题得,函数的值域为函数的值域的子集.,解得综上正数a的最小值是故答案为:【点睛】利用函数图象可以解决很多与函数有关的问题,如利用函数的图象解决函数性质问题,函数的零点、方程根的问题,有关不等式的问题等.解决上述问题的关键是根据题意画出相应函数的图象,利用数形结合思想求解.15、【解析】

分析:由可得,再利用两个复数代数形式的除法法则化简,结合共轭复数的定义可得结果.详解:满足,,所以,故答案为.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.16、【解析】

根据排列数计算公式可求得,结合组合数的性质即可化简求值.【详解】根据排列数计算公式可得,,所以,化简可解得,则由组合数性质可得,故答案为:462.【点睛】本题考查了排列数公式的简单应用,组合数性质的综合应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为招聘的、两个岗位与性别有关.(2)见解析.【解析】分析:(1)根据所给公式直接计算求解作答即可;(2)先分析此分布为超几何分布,然后确定X的取值可能,根据超几分布求解概率写分布列即可.详解:(1),故有的把握认为招聘的、两个岗位与性别有关.(2)的可能取值为0,1,2,,,.∴的分布列为012.点睛:考查独立性检验和离散型随机变量分分布列,属于基础题.18、(1)在为增函数;(2)【解析】

(1)首先求出的导数,并且求出时的斜率,根据点处的切线与直线垂直即可求出,再对求二阶导数即可判断的单调区间。(2)根据(1)的结果转化成求的问题,利用单调性求解即可。【详解】(1)曲线在点处的切线与直线垂直.令当时为增函数,当时为减函数。所以所以,所以在为增函数(2)令,因为在为增函数,所以在为增函数因为,所以不等式的解集为【点睛】本题主要考查了根据导数判断函数的单调性以及两条直角垂直时斜率的关系。在解决导数问题时通常需要取一些特殊值进行判断。属于难题。19、(1);(2)不存在;(3).【解析】

在的二项式定理中,先令得所有项系数和,再令得常数项,然后相减即得.将变成后,利用二项展开式的通项公式可得,再假设存在正整数n,r满足题意,利用等差数列的性质得,化简整理,解方程即可判断存在性;求得,2,3的代数式的值,即可得到所求结论.【详解】解:,,当时,令和,可得:,,故;当时,假设存在正整数n,r,使得、、,依次构成等差数列,由二项式定理可知,,若、、成等差数列,则,即,即,化简得,即为,若、、成等差数列,同理可得,即有,即为,化为,可得,方程无解,则不存在正整数n,r,使得、、,依次构成等差数列;,当时,;当时,;当时,;可得时,.【点睛】本题考查二项式定理及等差数列的性质,组合数公式的运用,考查化简整理的运算能力,属于综合题.20、(1)(2)【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论