版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个2.执行如图所示的程序框图,若输入的为2,则输出的值是()A.2 B.1 C. D.-13.设,为两条不同的直线,,为两个不同的平面,则()A.若,,则 B.若,,则C.若,,则 D.若,,则4.设,且,若能被100整除,则等于()A.19 B.91 C.18 D.815.设,是两个不同的平面,是直线且.“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.复数的共轭复数在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.5人站成一列,甲、乙两人相邻的不同站法的种数为()A.18 B.24 C.36 D.488.已知函数在处取得极值,则的图象在处的切线方程为()A. B. C. D.9.在一个袋子中装有个除颜色外其他均相同的小球,其中有红球个、白球个、黄球个,从袋中随机摸出一个球,记下颜色后放回,连续摸次,则记下的颜色中有红有黄但没有白的概率为()A. B. C. D.10.已知函数,若,均在[1,4]内,且,,则实数的取值范围是()A. B. C. D.11.若,则()A. B.1 C.0 D.12.两个线性相关变量x与y的统计数据如表:x99.51010.511y1110865其回归直线方程是,则相对应于点(11,5)的残差为()A.0.1 B.0.2 C.﹣0.1 D.﹣0.2二、填空题:本题共4小题,每小题5分,共20分。13.设离散型随机变量的概率分布如下:则的值为__________.14.若,关于的不等式恒成立,则实数的取值范围是___.15.设,若函数有大于零的极值点,则实数的取值范围是_____16.设是数列的前n项和,且,,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列的前项和为,,.(1)求的通项公式;(2)设,数列的前项和为,求的最小值.18.(12分)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.19.(12分)已知函数.(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)当时,若不等式恒成立,求实数的取值范围.20.(12分)“绿水青山就是金山银山”,为了保护环境,减少空气污染,某空气净化器制造厂,决定投入生产某种惠民型的空气净化器.根据以往的生产销售经验得到月生产销售的统计规律如下:①月固定生产成本为2万元;②每生产该型号空气净化器1百台,成本增加1万元;③月生产百台的销售收入(万元).假定生产的该型号空气净化器都能卖出(利润=销售收入﹣生产成本).(1)为使该产品的生产不亏本,月产量应控制在什么范围内?(2)该产品生产多少台时,可使月利润最大?并求出最大值.21.(12分)如图,已知正三棱柱的高为3,底面边长为,点分别为棱和的中点.(1)求证:直线平面;(2)求二面角的余弦值.22.(10分)设函数,其中实数是自然对数的底数.(1)若在上无极值点,求的值;(2)若存在,使得是在上的最大或最小值,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【点睛】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。2、A【解析】
根据给定的程序框图,执行循环体,逐次计算、判断,即可得到输出的结果,得到答案.【详解】由题意,执行如图所示的程序框图,可得:第一次循环:,满足判断条件,;第二次循环:,满足判断条件,;第三次循环:,满足判断条件,;第四次循环:,满足判断条件,;第五次循环:,满足判断条件,;第六次循环:,不满足判断条件,输出结果,故选A.【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.3、C【解析】
根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断.【详解】对于A选项,若,,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,,,根据直线与平面平行的判定定理知,,,但与不平行;对于C选项,若,,在平面内可找到两条相交直线、使得,,于是可得出,,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直.故选C.【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.4、A【解析】
将化为,根据二巷展开式展开后再根据余数的情况进行分析后可得所求.【详解】由题意得,其中能被100整除,所以要使能被100整除,只需要能被100整除.结合题意可得,当时,能被100整除.故选A.【点睛】整除问题是二项式定理中的应用问题,解答整除问题时要关注展开式的最后几项,本题考查二项展开式的应用,属于中档题.5、B【解析】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B.考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.6、A【解析】
复数的共轭复数为,共轭复数在复平面内对应的点为.【详解】复数的共轭复数为,对应的点为,在第一象限.故选A.【点睛】本题考查共轭复数的概念,复数的几何意义.7、D【解析】
将甲、乙两人捆绑在一起,再利用排列公式得到答案.【详解】将甲、乙两人捆绑在一起,不同站法的种数为:故答案选D【点睛】本题考查了排列组合中的捆绑法,属于简单题.8、A【解析】
利用列方程,求得的值,由此求得,进而求得的图象在处的切线方程.【详解】,函数在处取得极值,,解得,,于是,可得的图象在处的切线方程为,即.故选:A【点睛】本小题主要考查根据极值点求参数,考查利用导数求切线方程,属于基础题.9、C【解析】分析:由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,由此能求出记下的颜色中有红有黄但没有白的概率.详解:从袋中随机摸出一个球,摸到红球、白球、黄球的概率分别为,由已知得取出的3球中有2红1黄或2黄1红,2红1黄的情况有3种,2黄1红的情况也有3种,下的颜色中有红有黄但没有白的概率为.故选:C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意相互独立事件概率计算公式的合理运用.10、D【解析】
先求导,利用函数的单调性,结合,确定;再利用,即,可得,,设,,确定在上递增,在有零点,即可求实数的取值范围.【详解】解:,当时,恒成立,则f(x)在(0,+∞)上递增,则f(x)不可能有两个相等的函数值.故;由题设,则=考虑到,即,设,,则在上恒成立,在上递增,在有零点,则,,故实数的取值范围是.【点睛】本题考查了通过构造函数,转化为函数存在零点,求参数取值范围的问题,本题的难点是根据已知条件,以及,变形为,,然后构造函数转化为函数零点问题.11、D【解析】分析:根据题意求各项系数和,直接赋值法令x=-1代入即可得到.详解:已知,根据二项式展开式的通项得到第r+1项是,故当r为奇数时,该项系数为负,故原式令x=-1代入即可得到.故答案为D.点睛:这个题目考查了二项式中系数和的问题,二项式主要考查两种题型,一是考查系数和问题;二是考查特定项系数问题;在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.12、B【解析】
求出样本中心,代入回归直线的方程,求得,得出回归直线的方程,令,解得,进而求解相应点的残差,得到答案.【详解】由题意,根据表中的数据,可得,把样本中心代入回归方程,即,解得,即回归直线的方程为,令,解得,所以相应点的残差为,故选B.【点睛】本题主要考查了回归直线方程的求解及应用,其中解答中正确求解回归直线的方程,利用回归直线的方程得出预测值是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:离散型随机变量的概率之和为1详解:解得:。点睛:离散型随机变量的概率之和为1,是分布列的性质。14、【解析】
对不等式进行因式分解,,利用分离变量法转化为对应函数最值,即得到答案.【详解】,即:恒成立所以故答案为【点睛】本题考查了不等式恒成立问题,因式分解是解题的关键.15、【解析】
先求导数,求解导数为零的根,结合根的分布求解.【详解】因为,所以,令得,因为函数有大于0的极值点,所以,即.【点睛】本题主要考查利用导数研究函数的极值点问题,极值点为导数的变号零点,侧重考查转化化归思想.16、【解析】分析:把换成,可得的递推式,从而得通项.详解:,,∴,∴数列是首项和公差都为-1的等差数列,∴,从而.故答案为.点睛:在已知项和前项和的关系中,常常得用得出的递推式,从而求得数列的通项公式,但有时也可转化为的递推式,得出与有关的数列是等差数列或等比数列,先求得,然后再去求.解题时要注意的求法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)求出公差,根据通项公式即可求出;(2)由(1)可写出,则数列是等差数列.根据通项公式求出使得的的最大值,再根据前项和公式求出(或根据前项和公式求出,再根据二次函数求最值,求出的最小值).【详解】(1)方法一:由,又因为,所以.所以数列的公差,所以.方法二:设数列的公差为.则..得.所以.(2)方法一:由题意知.令得解得.因为,所以.所以的最小值为.方法二:由题意知.因为,所以数列是首项为,公差为的等差数列.所以.所以当时,数列的前项和取得最小值,最小值为.【点睛】本题考查等差数列的通项公式和前项和公式,考查学生的运算求解能力.18、(1);(2).【解析】
(1)由题意分别求得a,b的值即可确定椭圆方程;(2)解法一:由题意首先确定直线的方程,联立直线方程与圆的方程,确定点B的坐标,联立直线BF2与椭圆的方程即可确定点E的坐标;解法二:由题意利用几何关系确定点E的纵坐标,然后代入椭圆方程可得点E的坐标.【详解】(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,c=1.又因为DF1=,AF2⊥x轴,所以DF2=,因此2a=DF1+DF2=4,从而a=2.由b2=a2-c2,得b2=3.因此,椭圆C的标准方程为.(2)解法一:由(1)知,椭圆C:,a=2,因为AF2⊥x轴,所以点A的横坐标为1.将x=1代入圆F2的方程(x-1)2+y2=16,解得y=±4.因为点A在x轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2x+2.由,得,解得或.将代入,得,因此.又F2(1,0),所以直线BF2:.由,得,解得或.又因为E是线段BF2与椭圆的交点,所以.将代入,得.因此.解法二:由(1)知,椭圆C:.如图,连结EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B,所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥x轴,所以EF1⊥x轴.因为F1(-1,0),由,得.又因为E是线段BF2与椭圆的交点,所以.因此.【点睛】本题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.19、(I);(II).【解析】分析:(1)先求切线的斜率和切点的坐标,再求切线的方程.(2)分类讨论求,再解≥0,求出实数a的取值范围.详解:(Ⅰ)当时,,,,即曲线在处的切线的斜率为,又,所以所求切线方程为.(Ⅱ)当时,若不等式恒成立,易知,①若,则恒成立,在上单调递增;又,所以当时,,符合题意.②若,由,解得,则当时,,单调递减;当时,,单调递增.所以时,函数取得最小值.则当,即时,则当时,,符合题意.当,即时,则当时,单调递增,,不符合题意.综上,实数的取值范围是.点睛:(1)本题主要考查导数的几何题意和切线方程的求法,考查利用导数求函数的最小值,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答第2问由两次分类讨论,第一次是分类的起因是解不等式时,右边要化成,由于对数函数定义域的限制所以要分类讨论,第二次分类的起因是是否在函数的定义域内,大家要理解掌握.20、(1)1百台到5.5百台范围内.(2)产量300台时,利润最大,最大值为2万元.【解析】
(1)先利用销售收入减去成本得到利润的解析式,解分段函数不等式即可得结果;(2)结合(1)中解析式,分别求出两段函数利润的取值范围,综合两种情况可得当产量300台时,利润最大,最大值为2万元.【详解】(1)由题意得,成本函数为从而年利润函数为,要使不亏本,只要,所以或,解得或综上.答:若要该厂不亏本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度二手汽车贷款违约处理合同2篇
- 2024年度无人机销售合同
- 2024年度企业知识产权保护与许可使用合同3篇
- 恩下册语文课件
- 2024年度工程合同谈判策略与标的竞争限制3篇
- 2024年度担保存货监管与供应链金融服务扩展合同
- 《传染病和寄生虫》课件
- 2024年度租赁期满后物业续租合同3篇
- 2024年度甘肃省中药材种植加工合作协议
- 高层民用建筑钢结构技术规范-JGJ-99-98
- 工会选举选票及汇总表.doc
- 笛卡尔曲线方程和图[图文借鉴]
- 新人教版二年级上册数学第八单元教材分析
- 第三章--纳维-斯托克斯方程组
- 强制检定工作计量器具备案承诺书.doc
- 《夏洛特的网》导读题
- 高智商犯罪鹤岗128大案纪要
- 精益生产部门的职责作用
- 低压配电施工方案(完整版)
- 能源审计报告
- 山东特种车辆制造项目可行性研究报告(可编辑模板)
评论
0/150
提交评论