版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.92.已知命题p:|x-1|≥2,命题q:x∈Z,若“p且q”与“非q”同时为假命题,则满足条件的x为()A.{x|x≥3或x≤-1,x∈Z}B.{x|-1≤x≤3,x∈Z}C.{0,1,2}D.{-1,0,1,2,3}3.下列函数中,与函数的奇偶性相同,且在上单调性也相同的是()A. B. C. D.4.用反证法证明命题“已知为非零实数,且,,求证中至少有两个为正数”时,要做的假设是()A.中至少有两个为负数 B.中至多有一个为负数C.中至多有两个为正数 D.中至多有两个为负数5.已知是定义在上的奇函数,且,若,则()A.-3 B.0 C.3 D.20196.函数的最小正周期是()A. B. C. D.7.已知函数满足,当时,,若在区间上方程有两个不同的实根,则实数的取值范围是()A. B. C. D.8.已知,则()A.36 B.40 C.45 D.529.已知函数,若且对任意的恒成立,则的最大值是()A.2 B.3 C.4 D.510.已知函数的最小正周期是,若其图像向右平移个单位后得到的函数为奇函数,则函数的图像()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称11.如图所示是求的程序流程图,其中①应为()A. B. C. D.12.在中,,若,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若幂函数为上的增函数,则实数m的值等于______.14.在直角中,,,,为斜边的中点,则=.15.《九章算术》卷五《商功》中有如下叙述“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈“刍甍”指的是底面为矩形的对称型屋脊状的几何体,“下广三丈”是指底面矩形宽三丈,“袤四丈”是指底面矩形长四丈,“上袤二丈”是指脊长二丈,“无宽”是指脊无宽度,“高一丈”是指几何体的高为一丈.现有一个刍甍如图所示,下广三丈,袤四丈,上袤三丈,无广,高二丈,则该刍甍的外接球的表面积为_______________平方丈.16.已知变量满足约束条件,则目标函数的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知过点的直线的参数方程是(为参数),以平面直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程和曲线的直角坐标方程;(2)若直线与曲线交于,两点,试问是否存在实数,使得且?若存在,求出实数的值;若不存在,说明理由.18.(12分)已知函数.(1)若函数在其定义域内单调递增,求实数的最大值;(2)若存在正实数对,使得当时,能成立,求实数的取值范围.19.(12分)在中国绿化基金会的支持下,库布齐沙漠得到有效治理.2017年底沙漠的绿化率已达,从2018年开始,每年将出现这样的情况,上一年底沙漠面积的被栽上树改造为绿洲,而同时,上一年底绿洲面积的又被侵蚀,变为沙漠.(1)设库布齐沙漠面积为1,由绿洲面积和沙漠面积构成.2017年底绿洲面积为,经过1年绿洲面积为,经过n年绿洲面积为,试用表示;(2)问至少需要经过多少年的努力才能使库布齐沙漠的绿洲面积超过(年数取整数).20.(12分)已知数列的前项和为,且满足.(1)求数列的通项公式;(2)令,记数列的前项和为,证明:.21.(12分)已知的展开式前三项中的系数成等差数列.(1)求的值和展开式系数的和;(2)求展开式中所有的有理项.22.(10分)已知函数,.(1)若恒成立,试求实数的取值范围;(2)若函数的图像在点处的切线为直线,试求实数的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.2、C【解析】试题分析:由题意知q真,p假,∴|x-1|<1.∴-1<x<3且x∈Z.∴x=0,1,1.选C.考点:命题否定3、A【解析】
先分析的奇偶性以及在的单调性,然后再对每个选项进行分析.【详解】函数为偶函数,且在上为增函数,对于选项,函数为偶函数,在上为増函数,符合要求;对于选项,函数是偶函数,在上为减函数,不符合题意;对于选项,函数为奇函数,不符合题意;对于选项,函数为非奇非偶函数,不符合要求;只有选项符合要求,故选.【点睛】奇偶函数的判断:(满足定义域关于原点对称的情况下)若,则是奇函数;若,则是偶函数.4、A【解析】分析:用反证法证明某命题时,应先假设命题的否定成立,而命题的否定为:“a、b、c中至少有二个为负数”,由此得出结论.详解:用反证法证明某命题时,应先假设命题的否定成立,而:“中至少有二个为正数”的否定为:“中至少有二个为负数”.故选A.点睛:本题主要考查用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面是解题的关键,着重考查了推理与论证能力.5、B【解析】
根据题意,由函数的奇偶性分析可得,函数是周期为4的周期函数,据此求出、、的值,进而结合周期性分析可得答案.【详解】解:根据题意,是定义在上的奇函数,则,又由,则有,即,变形可得:,即函数是周期为4的周期函数,是定义在上的奇函数,则,又由,则,故.故选:B.【点睛】本题考查函数的奇偶性周期性的综合应用,涉及函数值的计算,属于基础题.6、C【解析】
根据三角函数的周期公式,进行计算,即可求解.【详解】由角函数的周期公式,可得函数的周期,又由绝对值的周期减半,即为最小正周期为,故选C.【点睛】本题主要考查了三角函数的周期的计算,其中解答中熟记余弦函数的图象与性质是解答的关键,着重考查了计算与求解能力,属于基础题.7、D【解析】分析:首先根据题意,求得函数在相应的区间上的解析式,之后在同一个坐标系内画出函数的图像,之后将函数的零点问题转化为对应曲线交点的个数问题,结合图形,得到结果.详解:当时,,,在同一坐标系内画出的图像,动直线过定点,当再过时,斜率,由图象可知当时,两图象有两个不同的交点,从而有两个不同的零点,故选D.点睛:该题考查的是有关函数零点个数的问题,在解题的过程中,需要先确定函数的解析式,之后在同一个坐标系内画出相应的曲线,将函数的零点个数转化为曲线的交点个数来解决,非常直观,在做题的时候,需要把握动直线中的定因素.8、A【解析】
利用二项式展开式的通项公式,分别计算和,相加得到答案.【详解】故答案选A【点睛】本题考查了二项式的计算,意在考查学生的计算能力.9、B【解析】分析:问题转化为对任意恒成立,求正整数的值.设函数,求其导函数,得到其导函数的零点位于内,且知此零点为函数的最小值点,经求解知,从而得到0,则正整数的最大值可求..详解:因为,所以对任意恒成立,
即问题转化为对任意恒成立.
令,则令,则,
所以函数在上单调递增.
因为
所以方程在上存在唯一实根,且满足.
当时,,
即,当时,,即,
所以函数在上单调递减,
在上单调递增.
所以所以
因为),
故整数的最大值是3,
故选:B.点睛:本题考查了利用导数研究函数的单调区间,考查了数学转化思想,解答此题的关键是,如何求解函数的最小值,属难题.10、D【解析】
由最小正周期为可得,平移后的函数为,利用奇偶性得到,即可得到,则,进而判断其对称性即可【详解】由题,因为最小正周期为,所以,则平移后的图像的解析式为,此时函数是奇函数,所以,则,因为,当时,,所以,令,则,即对称点为;令,则对称轴为,当时,,故选:D【点睛】本题考查图象变换后的解析式,考查正弦型三角函数的对称性11、C【解析】分析:由题意结合流程图的功能确定判断条件即可.详解:由流程图的功能可知当时,判断条件的结果为是,执行循环,当时,判断条件的结果为否,跳出循环,结合选项可知,①应为.本题选择C选项.点睛:本题主要考查流程图的应用,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.12、A【解析】
根据平面向量的线性运算法则,用、表示出即可.【详解】即:本题正确选项:【点睛】本题考查平面向量的加法、减法和数乘运算,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】
由函数为幂函数得,求出的值,再由幂函数在上是增函数求出满足条件的值.【详解】由幂函数为幂函数,可得,解得或0,又幂函数在区间上是增函数,,时满足条件,故答案为4.【点睛】本题主要考查幂函数的定义与性质,意在考查对基础知识的掌握与应用,属于中档题.高考对幂函数要求不高,只需掌握简单幂函数的图象与性质即可.14、【解析】试题分析:由于为直角三角形,且,,所以,由正弦定理得,,.考点:1.正弦定理;2.平面向量的数量积15、【解析】
连结,交于,可得,即可确定点为刍甍的外接球的球心,利用球的表面积公式即可得到答案.【详解】如图,连结,,连结,交于,可得,由已知可得,所以点为刍甍的外接球的球心,该球的半径为,所以该刍甍的外接球的表面积为.故答案为:【点睛】本题主要考查多面体外接球表面积的求法,同时考查数形结合思想,属于中档题.16、【解析】分析:作出不等式对应的平面区域,利用的几何意义,即可求解.详解:作出不等式组对应的平面区域如图:
由,得表示,斜率为-1纵截距为z的一组平行直线,
平移直线,当直线经过点B时,直线的截距最小,此时最小,
由,解得,
此时.
故答案为.点睛:本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)或5【解析】试题分析:(1)消参可得的普通方程,两边乘,利用极坐标与直角坐标的互化公式可得其直角坐标方程;(2)由题中条件可判断过圆心,得与矛盾,得结论.(1)消由直线的普通方程为由曲线的直角坐标方程为(2),而圆的直径为4,故直线必过圆心,此时与矛盾实数不存在.18、(1)4(2)【解析】
(1)先求导,再根据导数和函数的单调性的关系即可求出的范围,(2)根据题意可得,因此原问题转化为存在正实数使得等式成立,构造函数,利用导数求出函数的值域,即可求出的取值范围.【详解】解析:(1)由题意得,函数在其定义域内单调递增,则在内恒成立,故.因为(等号成立当且仅当即)所以(经检验满足题目),所以实数的最大值为4.(2)由题意得,则,因此原问题转化为:存在正数使得等式成立.整理并分离得,记,要使得上面的方程有解,下面求的值域,,故在上是单调递减,在上单调递增,所以,又,故当,,综上所述,,即实数的取值范围为.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用,考查转化思想,属于中档题.19、(1)(2)至少需要经过5年的努力.【解析】
(1)根据变化规律确定与关系;(2)先根据递推关系构造一个等比数列,再求得,最后解不等式得结果.【详解】(1)第n+1年绿洲面积由上一年即第n年绿洲面积、增加上一年底沙漠面积的以及减少上一年底绿洲面积的这三部分构成,即(2)所以数列构成以为首项,为公比的等比数列,因此由得因此至少需要经过年的努力才能使库布齐沙漠的绿洲面积超过【点睛】本题考查数列递推关系式、等比数列定义以及解指数不等式,考查综合分析求解能力,属中档题.20、(1);(2)见解析【解析】
(1)可以通过取计算出,再通过取时计算出,得出答案。(2)可通过裂项相消求解。【详解】(1)当时,有,解得.当时,有,则,整理得:,数列是以为公比,以为首项的等比数列.所以,即数列的通项公式为:.(2)由(1)有,则所以易知数列为递增数列,所以。【点睛】本题考察的是求数列的通项公式以及构造数列然后求和,求等比数列的通项公式可以先求首项和公比,求和可以通过裂项相消求解。21、(1);(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版全新泥水工合同协议下载
- 2025年度智能场馆租赁合同中保证金与押金管理细则3篇
- 2025年网络投票系统开发与运营合同范本3篇
- 2025年度特色餐饮文化体验馆租赁经营合同3篇
- 2025年教育机构安保人员劳动合同范本2篇
- 二零二五版饭店租赁合同合同履行监督与评估机制2篇
- 2025年度大数据中心建设合同担保协议书范本2篇
- 2024年规范化消石灰销售协议模板版B版
- 二零二五版智慧城市建设监理团队聘用合同3篇
- 2024美容院部分股份转让协议书
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 六年级数学质量分析及改进措施
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
- 【阅读提升】部编版语文五年级下册第三单元阅读要素解析 类文阅读课外阅读过关(含答案)
- 四年级上册递等式计算练习200题及答案
- 法院后勤部门述职报告
- 2024年国信证券招聘笔试参考题库附带答案详解
- 道医馆可行性报告
- 视网膜中央静脉阻塞护理查房课件
评论
0/150
提交评论