版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,则等于()A. B. C. D.2.王老师在用几何画板同时画出指数函数()与其反函数的图象,当改变的取值时,发现两函数图象时而无交点,并且在某处只有一个交点,则通过所学的导数知识,我们可以求出当函数只有一个交点时,的值为()A. B. C. D.3.下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直分别为直角三角形的斜边,直角边,.若,,在整个图形中随机取一点,则此点取自阴影部分的概率为()()A. B.C. D.4.定义在上的偶函数满足:对任意的,,有,则().A. B.C. D.5.函数的单调递减区间为()A. B. C. D.6.在公差为的等差数列中,“”是“是递增数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.设是函数的导函数,则的值为()A. B. C. D.8.在的展开式中,含的项的系数是()A.-832 B.-672 C.-512 D.-1929.如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,且AF=12A.66 B.33 C.610.过点,且与直线平行的直线的方程为()A. B. C. D.11.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C. D.12.正方体中,若外接圆半径为,则该正方体外接球的表面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,以长方体的顶底为坐标原点,过的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为,则的坐标为________14.已知点是抛物线上一点,是抛物线上异于的两点,在轴上的射影分别为,若直线与直线的斜率之差为,是圆上一动点,则的面积的最大值为__________.15.的展开式中的系数为__________.16.设双曲线的左、右焦点分别为,右顶点为A,若A为线段的一个三等分点,则该双曲线离心率的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设1,其中pR,n,(r=0,1,2,…,n)与x无关.(1)若=10,求p的值;(2)试用关于n的代数式表示:;(3)设,,试比较与的大小.18.(12分)已知函数.(1)若在上的最大值是最小值的2倍,解不等式;(2)若存在实数使得成立,求实数的取值范围.19.(12分)某园林基地培育了一种新观赏植物,经过了一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分组做出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).1)求样本容量和频率分布直方图中的2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取3株,设随机变量表示所抽取的3株高度在[80,90)内的株数,求随机变量的分布列及数学期望.20.(12分)已知函数,.(1)若函数恰有一个极值点,求实数a的取值范围;(2)当,且时,证明:.(常数是自然对数的底数).21.(12分)在平面直角坐标系中,直线与抛物线相交于不同的两点.(1)如果直线过抛物线的焦点,求的值;(2)如果,证明直线必过一定点,并求出该定点.22.(10分)在平面直角坐标系xOy中,曲线M的参数方程为(t为参数,且t>0),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=4cosθ.(1)将曲线M的参数方程化为普通方程,并将曲线C的极坐标方程化为直角坐标方程;(2)求曲线M与曲线C交点的极坐标(ρ≥0,0≤θ<2π).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:集合,,,,故选B.考点:指数函数、对数函数的性质及集合的运算.2、B【解析】
当指数函数与对数函数只有一个公共点时,则在该点的公切线的斜率相等,列出关于的方程.【详解】设切点为,则,解得:故选B.【点睛】本题考查导数的运算及导数的几何意义,考查数形结合思想的应用,要注意根据指数函数与对数函数图象的凹凸性,得到在其公共点处公切线的斜率相等.3、D【解析】
首先计算出图形的总面积以及阴影部分的面积,再根据几何概型的概率计算公式计算可得.【详解】解:因为直角三角形的斜边为,,,所以,以为直径的圆面积为,以为直径的圆面积为,以为直径的圆面积为.所以图形总面积,,所以.故选:【点睛】本题考查面积型几何概型的概率计算问题,属于基础题.4、A【解析】由对任意x1,x2[0,+∞)(x1≠x2),有<0,得f(x)在[0,+∞)上单独递减,所以,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行5、D【解析】
先求出函数的定义域,确定内层函数的单调性,再根据复合函数的单调性得出答案.【详解】由题可得,即,所以函数的定义域为,又函数在上单调递减,根据复合函数的单调性可知函数的单调递减区间为,故选D.【点睛】本题考查对数函数的单调性和应用、复合函数的单调性、二次函数的性质,体现了转化的数学思想,属于中档题.6、A【解析】试题分析:若,则,,所以,是递增数列;若是递增数列,则,,推不出,则“”是“是递增数列”的充分不必要条件,故选A.考点:充分条件、必要条件的判定.7、C【解析】分析:求导,代值即可.详解:,则.故选:C.点睛:对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.8、A【解析】
求出展开式中的系数减2倍的系数加的系数即可.【详解】含的项的系数即求展开式中的系数减2倍的系数加的系数即含的项的系数是.故选A.【点睛】本题考查二项式定理,属于中档题.9、C【解析】如图,以A为原点建立空间直角坐标系,则A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),AG=(a,a,0),AC=(0,2a,2a),BG=(a,-a,0),BC=(0,0,2a),设平面AGC的法向量为n1=(x1,y1,1),由AG⋅n1=0AC⋅nsinθ=BG⋅n1|BG10、A【解析】
求出直线的斜率,根据两直线平行斜率的性质,可以求出所求直线的斜率,写出点斜式方程,最后化为一般方程.【详解】因为的斜率为2,所以所求直线的方程的斜率也为2,因此所求直线方程为,故本题选A.【点睛】本题考查了求过一点与已知直线平行的直线的方程.本题也可以这样求解:与直线平行的直线可设为,过代入方程中,,所以直线方程为,一般来说,与直线平行的直线可设为;与直线垂直的直线可设为.11、C【解析】
试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C.考点:平面向量数量积的运算.12、C【解析】
设正方体的棱长为,则是边长为的正三角形,求得其外接圆的半径,求得的值,进而求得球的半径,即可求解球的表面积,得到答案.【详解】如图所示,设正方体的棱长为,则是边长为的正三角形,设其外接圆的半径为,则,即,由,得,所以正方体的外接球的半径为,所以正方体的外接球的表面积为,故选C.【点睛】本题主要考查了求得表面积与体积的计算问题,同时考查了组合体及球的性质的应用,其中解答中根据几何体的结构特征,利用球的性质,求得球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据的坐标,求的坐标,确定长方体的各边长度,再求的坐标.【详解】点的坐标是,,,,,故答案为:.【点睛】本题考查向量坐标的求法,意在考查基本概念和基础知识,属于简单题型.14、10【解析】分析:由题意知,设的斜率为k,则PA的斜率为k-1,分别表述出直线PA,PB,与抛物线联立即可求出A和B的横坐标,即求出,要使面积最大,则D到AB的距离要最大,即高要过圆心,从而即可求出答案.详解:由题意知,则,设的斜率为k,则PA的斜率为k-1,且设,则PB:,联立消去y得:,由韦达定理可得,即,同理可得故,要使面积最大,则D到AB的距离要最大,即高要过圆心,则高为5..故答案为:10.点睛:对题目涉及的变量巧妙的引进参数(如设动点坐标、动直线方程等),利用题目的条件和圆锥曲线方程组成二元二次方程组,再化为一元二次方程,从而利用根与系数的关系进行整体代换,达到“设而不求,减少计算”的效果.15、-10【解析】分析:利用二项式展开式通项即可得出答案.详解:,当时,.故答案为:-10.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.16、3.【解析】分析:由题根据A为线段的一个三等分点,建立等式关系即可.详解:由题可知:故双曲线离心率的值为3.点睛:考查双曲线的离心率求法,根据题意建立正确的等式关系为解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).(3).【解析】分析:(1)先根据二项式展开式通项公式得,解得p的值;(2)先由得,再得,等式两边对求导,得;最后令得结果,(3)先求,化简不等式为比较与的大小关系,先计算归纳得大小关系,利用数学归纳法给予证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:令得:,即(3),猜测:当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:有关组合式的求值证明,常采用构造法逆用二项式定理.对二项展开式两边分别求导也是一个常用的方法,另外也可应用组合数性质进行转化:,.18、(Ⅰ);(Ⅱ).【解析】分析:(1)根据在上的最大值是最小值的2倍求出a的值,再解不等式.(2)先分离参数得,再求右边式子的最小值,得到a的取值范围.详解:(1)∵,∴,,∴,解得,不等式,即,解得或,故不等式的解集为.(2)由,得,令,问题转化为,又故,则,所以实数的取值范围为.点睛:(1)本题主要考查不等式的解法和求绝对值不等式的最值,意在考查学生对这些基础知识的掌握能力.(2)本题易错,得到,问题转化为,不是转化为,因为它是存在性问题.19、(1)见解析;(2)见解析.【解析】分析:(1)由茎叶图及频率分布直方图能求出样本容量n和频率分布直方图中的x,y;(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和期望.详解:(1)由题意可知,样本容量,.(2)由题意可知,高度在[80,90)内的株数为5,高度在[90,100]内的株数为2,共7株.抽取的3株中高度在[80,90)内的株数的可能取值为1,2,3,则,,.123故.点睛:本题考查概率的求法,考查离散型随机变量的分布列及数学期望的求法,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想.20、(1)(2)证明见解析【解析】
1,等价于方程在恰有一个变号零点.即在恰有一个变号零点.令,利用
函数图象即可求解.
2要证明:只需证明,即证明要证明,即证明利用导数即可证明.【详解】Ⅰ,,,函数恰有一个极值点,方程在恰有一个变号零点.在恰有一个变号零点.令,则.可得时,,函数单调递增,时,,函数单调递减.函数草图如下,可得,.实数a的取值范围为:2要证明:证明.证明,即证明.令则,时,,函数递增,时,,递减.,即原不等式成立.要证明,即证明.,故只需证明即可.令,则.时,,函数递减,时,,函数递增.,又,故原不等式成立.综上,,【点睛】本题考查了函数的极值、单调性,考查了函数不等式的证明、分析法证明不等式,属于中档题.21、(Ⅰ)-3(Ⅱ)过定点,证明过程详见解析.【解析】
Ⅰ根据抛物线的方程得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 朱自清春教案课件
- 医疗纠纷应对
- 室外定位技术智慧养老技术概论
- 树立正确职业价值观
- 《选房方式小结》课件
- 《光学工艺与测量》课件
- 系统详细设计流程及范畴
- 微课人力资源规划的程序财经管理人力资源管理系副教
- 外科手术饮食
- 《汽车驾驶虚拟现实》课件
- 民族团结主题班会教学课件
- 国开成本会计第14章综合练习试题及答案
- 幼儿园教育活动设计与指导(第二版)教案第二章第二节幼儿园语言教育活动设计二
- 外观检查记录表
- GB∕T 13171.1-2022 洗衣粉 第1部分:技术要求
- 气温的变化与分布 完整版课件
- 现在完成时的用法 完整版课件
- 中小学古诗词首
- DB11T 1411-2017 节能监测服务平台建设规范
- 外科学教案-心脏疾病
- 白内障手术流程
评论
0/150
提交评论